Biological and physical interactions on a tropical island coral reef: Transport and retention processes on moorea, French Polynesia

Abstract

The Moorea Coral Reef Long Term Ecological Research project funded by the US National Science Foundation includes multidisciplinary studies of physical processes driving ecological dynamics across the fringing reef, back reef, and fore reef habitats of Moorea, French Polynesia. A network of oceanographic moorings and a variety of other approaches have been used to investigate the biological and biogeochemical aspects of water transport and retention processes in this system. There is evidence to support the hypothesis that a low-frequency counterclockwise flow around the island is superimposed on the relatively strong alongshore currents on each side of the island. Despite the rapid flow and flushing of the back reef, waters over the reef display chemical and biological characteristics distinct from those offshore. The patterns include higher nutrient and lower dissolved organic carbon concentrations, distinct microbial community compositions among habitats, and reef assemblages of zooplankton that exhibit migration behavior, suggesting multigenerational residence on the reef. Zooplankton consumption by planktivorous fish on the reef reflects both retention of reef-associated taxa and capture by the reef community of resources originating offshore. Coral recruitment and population genetics of reef fishes point to retention of larvae within the system and high recruitment levels from local adult populations. The combined results suggest that a broad suite of physical and biological processes contribute to high retention of externally derived and locally produced organic materials within this island coral reef system. © 2013 by The Oceanography Society. All rights reserved.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.5670/oceanog.2013.45

Publication Info

Leichter, James, Alice Alldredge, Giacomo Bernardi, Andrew Brooks, Craig Carlson, Robert Carpenter, Peter Edmunds, Melanie Fewings, et al. (2013). Biological and physical interactions on a tropical island coral reef: Transport and retention processes on moorea, French Polynesia. Oceanography, 26(3). pp. 52–63. 10.5670/oceanog.2013.45 Retrieved from https://hdl.handle.net/10161/10764.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Hench

James Hench

Associate Professor of Oceanography

Research in my lab focuses on fluid dynamics in the coastal ocean and its effects on transport processes. We use field measurements, computational models, and theoretical analyses to understand fundamental physical processes in these systems. We also work extensively on interdisciplinary problems that have a significant physical component to better understand the effects of water motion on the geochemistry, biology, and ecology of shallow marine systems. 

Much of our research is on coral reef hydrodynamics and our lab leads the Physical Oceanographic component of the Moorea Coral Reef LTER project 

Current projects include: 1) wave-driven circulation and exchange in coral reef, lagoon, and pass systems; 2) extreme events and their effects on coral reef systems; 3) understanding the effects of rough bottoms such as corals on circulation and scalar mixing; 4) the impact of stratification on vertical mixing in a highly stratified wind-driven estuary; 5) larval transport around a coral reef island; 6) sponge excurrents; and 7) the effects of wave forcing on corallivory. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.