Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context.

Loading...
Thumbnail Image

Date

2007-06

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

187
views
190
downloads

Citation Stats

Attention Stats

Abstract

In a well-studied model of social behaviour, male zebra finches sing directed song to court females and undirected song, used possibly for practice or advertisement. Although the two song types are similar, the level of neural activity and expression of the immediate early gene egr-1 are higher during undirected than during directed singing in the lateral part of the basal ganglia song nucleus AreaX (LAreaX) and its efferent pallial song nuclei lateral magnocellular nucleus of the anterior nidopallium (LMAN) and the robust nucleus of the arcopallium (RA). As social interactions are dependent on brain motivation systems, here we test the hypothesis that the midbrain ventral tegmental area-substantia nigra pars compacta (VTA-SNc) complex, which provides a strong dopaminergic input to LAreaX, is a source of this modulation. Using egr-1 expression, we show that GABAergic interneurons in VTA-SNc are more active during directed courtship singing than during undirected singing. We also found that unilateral removal of VTA-SNc input reduced singing-dependent gene expression in ipsilateral LAreaX during both social contexts but it did not eliminate social context differences in LAreaX. In contrast, such lesions reduced and eliminated the social context differences in efferent nuclei LMAN and RA, respectively. These results suggest that VTA-SNc is not solely responsible for the social context gene regulation in LAreaX, but that VTA-SNc input to LAreaX enhances the singing-regulated gene expression in this nucleus and, either through LAreaX or through direct projections to LMAN and RA, VTA-SNc is necessary for context-dependent gene regulation in these efferent nuclei.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1111/j.1460-9568.2007.05600.x

Publication Info

Hara, Erina, Lubica Kubikova, Neal A Hessler and Erich D Jarvis (2007). Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context. Eur J Neurosci, 25(11). pp. 3406–3416. 10.1111/j.1460-9568.2007.05600.x Retrieved from https://hdl.handle.net/10161/11263.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Jarvis

Erich David Jarvis

Adjunct Professor in the Department of Neurobiology

Dr. Jarvis' laboratory studies the neurobiology of vocal communication. Emphasis is placed on the molecular pathways involved in the perception and production of learned vocalizations. They use an integrative approach that combines behavioral, anatomical, electrophysiological and molecular biological techniques. The main animal model used is songbirds, one of the few vertebrate groups that evolved the ability to learn vocalizations. The generality of the discoveries is tested in other vocal learning orders, such as parrots and hummingbirds, as well as non-vocal learners, such as pigeons and non-human primates. Some of the questions require performing behavior/molecular biology experiments in freely ranging animals, such as hummingbirds in tropical forest of Brazil. Recent results show that in songbirds, parrots and hummingbirds, perception and production of song are accompanied by anatomically distinct patterns of gene expression. All three groups were found to exhibit vocally-activated gene expression in exactly 7 forebrain nuclei that are very similar to each other. These structures for vocal learning and production are thought to have evolved independently within the past 70 million years, since they are absent from interrelated non-vocal learning orders. One structure, Area X of the basal ganglia's striatum in songbirds, shows large differential gene activation depending on the social context in which the bird sings. These differences may reflect a semantic content of song, perhaps similar to human language.

The overall goal of the research is to advance knowledge of the neural mechanisms for vocal learning and basic mechanisms of brain function. These goals are further achieved by combined collaborative efforts with the laboratories of Drs. Mooney and Nowicki at Duke University, who study respectively behavior and electrophysiological aspects of songbird vocal communication.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.