Photoacoustic tomography: principles and advances.

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

254
views
428
downloads

Abstract

Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results.

Department

Description

Provenance

Citation

Scholars@Duke

Yao

Junjie Yao

Associate Professor of Biomedical Engineering

Our mission at PI-Lab is to develop state-of-the-art photoacoustic tomography (PAT) technologies and translate PAT advances into diagnostic and therapeutic applications, especially in functional brain imaging and early cancer theranostics. PAT is the most sensitive modality for imaging rich optical absorption contrast over a wide range of spatial scales at high speed, and is one of the fastest growing biomedical imaging technologies. Using numerous endogenous and exogenous contrasts, PAT can provide high-resolution images at scales covering organelles, cells, tissues, organs, small-animal organisms, up to humans, and can reveal tissue’s anatomical, functional, metabolic, and even histologic properties, with molecular and neuronal specificity.

At PI-Lab, we develop PAT technologies with novel and advanced imaging performance, in terms of spatial resolutions, imaging speed, penetration depth, detection sensitivity, and functionality. We are interested with all aspects of PAT technology innovations, including efficient light illumination, high-sensitivity ultrasonic detection, super-resolution PAT, high-speed imaging acquisition, novel PA genetic contrast, and precise image reconstruction. On top of the technological advancements, we are devoted to serve the broad life science and medical communities with matching PAT systems for various research and clinical needs. With its unique contrast mechanism, high scalability, and inherent functional and molecular imaging capabilities, PAT is well suited for a variety of pre-clinical applications, especially for studying tumor angiogenesis, cancer hypoxia, and brain disorders; it is also a promising tool for clinical applications in procedures such as cancer screening, melanoma staging, and endoscopic examination.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.