Predicting the dry deposition of aerosol-sized particles using layer-resolved canopy and pipe flow analogy models: Role of turbophoresis

Loading...
Thumbnail Image

Date

2010-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

257
views
353
downloads

Citation Stats

Abstract

A number of synthesis activities, mathematical modeling, and experiments on dry deposition of aerosol-sized particles over forested surfaces point to three disjointed findings: (1) deposition velocities measured over tall forests do not support a clearly defined minimum for particle sizes in the range of 0.1-2 m; (2) when measurements of the normalized deposition velocity (V d+) are presented as a function of the normalized particle timescale (p+), where the normalizing variables are the friction velocity and air viscosity, a power law scaling in the form of V d+ ∼ (p+)2 emerges in the so-called inertial-impaction regime for many laboratory and crop experiments, but none of the forest measurements fall on this apparent scaling law; and (3) two recent models with entirely different assumptions about the representation of the particle deposition process reproduce common data sets for forests. We show that turbophoresis, when accounted for at the leaf scale in vertically resolved or multilayer models (MLMs), provides a coherent explanation for the first two findings and sheds light on the third. The MLM resolves the canopy vertical structure and its effects on both the flow statistics and the leaf particle collection mechanisms. The proposed MLM predictions agree with a recent two-level particle-resolving data set collected over 1 year duration for a Scots pine stand in Hyytil (southern Finland). Such an approach can readily proportion the particle deposition onto foliage and forest floor and can take advantage of recent advances in measurements of canopy structural properties derived from remote sensing platforms. Copyright 2010 by the American Geophysical Union.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1029/2009JD012853

Publication Info

Katul, GG, T Grönholm, S Launiainen and T Vesala (2010). Predicting the dry deposition of aerosol-sized particles using layer-resolved canopy and pipe flow analogy models: Role of turbophoresis. Journal of Geophysical Research Atmospheres, 115(12). p. D12202. 10.1029/2009JD012853 Retrieved from https://hdl.handle.net/10161/4613.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Katul

Gabriel G. Katul

George Pearsall Distinguished Professor

Gabriel G. Katul received his B.E. degree in 1988 at the American University of Beirut (Beirut, Lebanon), his M.S. degree in 1990 at Oregon State University (Corvallis, OR) and his Ph.D degree in 1993 at the University of California in Davis (Davis, CA).  He currently holds a distinguished Professorship in Hydrology and Micrometeorology at the Department of Civil and Environmental Engineering at Duke University (Durham, NC).   He was a visiting fellow at University of Virginia (USA) in 1997, the Commonwealth Science and Industrial Research Organization (Australia) in 2002, the University of Helsinki (Finland) in 2009,  the FulBright-Italy Distinguished Fellow at Politecnico di Torino (Italy) in 2010, the École polytechnique fédérale de Lausanne (Switzerland) in 2013,  Nagoya University (Japan) in 2014, University of Helsinki (Finland) in 2017, the Karlsruher Institute for Technology (Germany) in 2017, Princeton University (USA) in 2020, and CzechGlobe (Brno - Czech Republic) in 2023. He received several honorary awards, including the inspirational teaching award by the students of the School of the Environment at Duke University (in 1994 and 1996), an honorary certificate by La Seccion de Agrofisica de la Sociedad Cubana de Fisica in Habana (in 1998), the Macelwane medal and became thereafter a fellow of the American Geophysical Union (in 2002), the editor’s citation for excellence in refereeing from the American Geophysical Union (in 2008), the Hydrologic Science Award from the American Geophysical Union (in 2012), the John Dalton medal from the European Geosciences Union (in 2018), and the Outstanding Achievements in Biometeorology Award from the American Meteorological Society (in 2021) and later became an elected fellow of the American Meteorological Society (in 2024).  Katul was elected to the National Academy of Engineering (in 2023) for his contributions in eco-hydrology and environmental fluid mechanics.  He served as the Secretary General for the Hydrologic Science Section at the American Geophysical Union (2006-2008).  His research focuses on micro-meteorology and near-surface hydrology with emphasis on heat, momentum, carbon dioxide, water vapor, ozone, particulate matter (including aerosols, pollen, and seeds) and water transport in the soil-plant-atmosphere system as well as their implications to a plethora of hydrological, ecological, atmospheric and climate change related problems.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.