The abelianization of the Johnson kernel

Loading...
Thumbnail Image

Date

2014-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

192
views
206
downloads

Citation Stats

Abstract

We prove that the first complex homology of the Johnson subgroup of the Torelli group Tg is a non-trivial, unipotent Tg-module for all g ≥ 4 and give an explicit presentation of it as a Sym H 1(Tg,C)-module when g ≥ 6. We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the infinitesimal Alexander invariant of the associated graded Lie algebra of G. In this setup, we also obtain a precise nilpotence test. © European Mathematical Society 2014.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.4171/JEMS/447

Publication Info

Dimca, A, R Hain and S Papadima (2014). The abelianization of the Johnson kernel. Journal of the European Mathematical Society, 16(4). pp. 805–822. 10.4171/JEMS/447 Retrieved from https://hdl.handle.net/10161/8975.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Hain

Richard Hain

Professor of Mathematics

I am a topologist whose main interests include the study of the topology of complex algebraic varieties (i.e. spaces that are the set of common zeros of a finite number of complex polynomials). What fascinates me is the interaction between the topology, geometry and arithmetic of varieties defined over subfields of the complex numbers, particularly those defined over number fields. My main tools include differential forms, Hodge theory and Galois theory, in addition to the more traditional tools used by topologists. Topics of current interest to me include:

  • the topology and related geometry of various moduli spaces, such as the moduli spaces of smooth curves and moduli spaces of principally polarized abelian varieties;
  • the study of fundamental groups of algebraic varieties, particularly of moduli spaces whose fundamental groups are mapping class groups;
  • the study of various enriched structures (Hodge structures, Galois actions, and periods) of fundamental groups of algebraic varieties;
  • polylogarithms, mixed zeta values, and their elliptic generalizations, which occur as periods of fundamental groups of moduli spaces of curves. 

My primary collaborators are Francis Brown of Oxford University and Makoto Matsumoto of Hiroshima University.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.