The dynamic efficiency costs of common-pool resource exploitation

Loading...
Thumbnail Image

Date

2014-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

337
views
1224
downloads

Citation Stats

Abstract

We conduct the first empirical investigation of common-pool resource users' dynamic and strategic behavior at the micro level using real-world data. Fishermen's strategies in a fully dynamic game account for latent resource dynamics and other players' actions, revealing the profit structure of the fishery. We compare the fishermen's actual and socially optimal exploitation paths under a time-specific vessel allocation policy and find a sizable dynamic externality. Individual fishermen respond to other users by exerting effort above the optimal level early in the season. Congestion is costly instantaneously but is beneficial in the long run because it partially offsets dynamic inefficiencies.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1257/aer.104.12.4071

Publication Info

Huang, Ling, and Martin D Smith (2014). The dynamic efficiency costs of common-pool resource exploitation. American Economic Review, 104(12). pp. 3991–4026. 10.1257/aer.104.12.4071 Retrieved from https://hdl.handle.net/10161/9293.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Smith

Martin D. Smith

George M. Woodwell Distinguished Professor of Environmental Economics

Smith studies the economics of the oceans, including fisheries, marine ecosystems, seafood markets, and coastal climate adaptation. He has written on a range of policy-relevant topics, including economics of marine reserves, seasonal closures in fisheries, ecosystem-based management, catch shares, nutrient pollution, aquaculture, genetically modified foods, the global seafood trade, organic agriculture, coastal property markets, and coastal responses to climate change. He is best known for identifying unintended consequences of marine and coastal policies that ignore human behavioral feedbacks. Smith’s methodological interests span micro-econometrics, optimal control theory, time series analysis, and numerical modeling of coupled human-natural systems. Smith’s published work appears in The American Economic Review, Nature, Science, Proceedings of the National Academy of Sciences, Journal of Environmental Economics and Management, the Review of Economics and Statistics, and a number of other scholarly journals that span environmental economics, fisheries science, marine policy, ecology, and the geo-sciences. Smith has received national and international awards, including the Quality of Research Discovery from the Agricultural and Applied Economics Association, Outstanding Article in Marine Resource Economics, and an Aldo Leopold Leadership Fellowship. His research has been funded by the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Center for Ecological Analysis and Synthesis, and the Research Council of Norway. Smith has served as Editor-in-Chief of the journal Marine Resource Economics, Co-Editor of the Journal of the Association of Environmental and Resource Economists, and Co-Editor of the Journal of Environmental Economics and Management. He served as a member of the Scientific and Statistical Committee of the Mid-Atlantic Fishery Management Council and currently serves on the Ocean Studies Board of the National Academies.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.