Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets.

Abstract

Stimulated CD4(+) T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4(+) T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.4049/jimmunol.1003613

Publication Info

Michalek, Ryan D, Valerie A Gerriets, Sarah R Jacobs, Andrew N Macintyre, Nancie J MacIver, Emily F Mason, Sarah A Sullivan, Amanda G Nichols, et al. (2011). Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol, 186(6). pp. 3299–3303. 10.4049/jimmunol.1003613 Retrieved from https://hdl.handle.net/10161/10317.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Macintyre

Andrew Neil Macintyre

Associate Professor in Medicine

Andrew Macintyre, PhD, directs the Immunology Unit within the Duke Regional Biocontainment Laboratory. The Macintyre lab team designs and performs assays to quantify immune reconstitution and immune responses. The lab specializes in multiplex cytokine arrays, flow cytometry, high-throughput ELISAs, qRT-PCR, and other molecular tests. 

The assays his team develops and runs support research into biodefense and critical public health challenges. Long-running collaborative projects include the evaluation of radiation countermeasures and the development of vaccines for influenza, gonorrhea, SARS-CoV2, and other pathogens.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.