Quantitative genetics of CTCF binding reveal local sequence effects and different modes of X-chromosome association.

Abstract

Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pgen.1004798

Publication Info

Ding, Zhihao, Yunyun Ni, Sander W Timmer, Bum-Kyu Lee, Anna Battenhouse, Sandra Louzada, Fengtang Yang, Ian Dunham, et al. (2014). Quantitative genetics of CTCF binding reveal local sequence effects and different modes of X-chromosome association. PLoS Genet, 10(11). p. e1004798. 10.1371/journal.pgen.1004798 Retrieved from https://hdl.handle.net/10161/10680.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Crawford

Gregory E. Crawford

Professor in Pediatrics

My primary research interest is understanding how the genome is regulated.  The human genome contains approximately 25,000 genes, which are encoded in ~2% of the genome. The overarching goal of my research program is to identify and characterize how these genes are turned on and off in different cell types, tissues, development states, environmental responses, diseases, and individuals. By understanding where all gene regulatory elements are located, how they work to regulate gene expression, and how non-coding variants within these regions affect function, my research program can address a number of important basic and clinical questions.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.