Show simple item record

dc.contributor.advisor Chakrabarty, Krishnendu en_US
dc.contributor.author Yilmaz, Mahmut en_US
dc.date.accessioned 2009-05-01T18:26:40Z
dc.date.available 2011-07-26T04:30:04Z
dc.date.issued 2009 en_US
dc.identifier.uri http://hdl.handle.net/10161/1120
dc.description Dissertation en_US
dc.description.abstract <p>Timing-related defects are becoming increasingly important in nanometer-technology integrated circuits (ICs). Small delay variations induced by crosstalk, process variations, power-supply noise, as well as resistive opens and shorts can potentially cause timing failures in a design, thereby leading to quality and reliability concerns. All these effects are noticeable in today's technologies and they are likely to become more prominent in the next-generation process technologies~\cite{itrs2007}.</p><p>The detection of small-delay defects (SDDs) is difficult because of the small size of the introduced delay. Although the delay introduced by each SDD is small, the overall impact can be significant if the target path is critical, has low slack, or includes many SDDs. The overall delay of the path may become larger than the clock period, causing circuit failure or temporarily incorrect results. As a result, the detection of SDDs typically requires fault excitation through least-slack paths. However, widely-used automatic test-pattern generation (ATPG) techniques are not effective at exciting small delay defects. On the other hand, the usage of commercially available timing-aware tools is expensive in terms of pattern count inflation and very high test-generation times. Furthermore, these tools do not target real physical defects.</p><p>SDDs are induced not only by physical defects, but also by run-time variations such as crosstalk and power-supply noise. These variations are ignored by today's commercial ATPG tools. As a result, new methods are required for comprehensive coverage of SDDs.</p><p>Test data volume and test application time are also major concerns for large industrial circuits. In recent years, many compression techniques have been proposed and evaluated using industrial designs. However, these methods do not target sequence- or timing-dependent failures while compressing the test patterns. Since timing-related failures in high-performance integrated circuits are now increasingly dominated by SDDs, it is necessary to develop timing-aware compression techniques.</p><p>This thesis addresses the problem of selecting the most effective test patterns for detecting SDDs. A new gate and interconnect delay-defect probability measure is defined to model delay variations for nanometer technologies. The proposed technique intelligently selects the best set of patterns for SDD detection from a large pattern set generated using timing-unaware ATPG. It offers significantly lower computational complexity and it excites a larger number of long paths compared to previously proposed timing-aware ATPG methods. It is shown that, for the same pattern count, the selected patterns are more effective than timing-aware ATPG for detecting small delay defects caused by resistive shorts, resistive opens, process variations, and crosstalk. The proposed technique also serves as the basis for an efficient SDD-aware test compression scheme. The effectiveness of the proposed technique is highlighted for industrial circuits.</p><p>In summary, this research is targeted at the testing of SDDs caused by various underlying reasons. The proposed techniques are expected to generate high-quality and compact test patterns for various types of defects in nanometer ICs. The results of this research are expected to provide low-cost and effective test methods for nanometer devices, and they will lead to higher shipped-product quality.</p> en_US
dc.format.extent 4607316 bytes
dc.format.mimetype application/pdf
dc.language.iso en_US
dc.subject Engineering, Electronics and Electrical en_US
dc.subject atpg en_US
dc.subject delay fault en_US
dc.subject delay test en_US
dc.subject pattern grading en_US
dc.subject pattern selection en_US
dc.subject small delay defect en_US
dc.title Automated Test Grading and Pattern Selection for Small-Delay Defects en_US
dc.type Dissertation en_US
dc.department Electrical and Computer Engineering en_US
duke.embargo.months 24 en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record