Some remarks on Finsler manifolds with constant flag curvature

Date

2002

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

189
views
145
downloads

Abstract

This article is an exposition of four loosely related remarks on the geometry of Finsler manifolds with constant positive flag curvature. The first remark is that there is a canonical Kahler structure on the space of geodesics of such a manifold. The second remark is that there is a natural way to construct a (not necessarily complete) Finsler n-manifold of constant positive flag curvature out of a hypersurface in suitably general position in complex projective n-space. The third remark is that there is a description of the Finsler metrics of constant curvature on the 2-sphere in terms of a Riemannian metric and 1-form on the space of its geodesics. In particular, this allows one to use any (Riemannian) Zoll metric of positive Gauss curvature on the 2-sphere to construct a global Finsler metric of constant positive curvature on the 2-sphere. The fourth remark concerns the generality of the space of (local) Finsler metrics of constant positive flag curvature in dimension n+1>2 . It is shown that such metrics depend on n(n+1) arbitrary functions of n+1 variables and that such metrics naturally correspond to certain torsion- free S^1 x GL(n,R)-structures on 2n-manifolds. As a by- product, it is found that these groups do occur as the holonomy of torsion-free affine connections in dimension 2n, a hitherto unsuspected phenomenon. 

Department

Description

Provenance

Subjects

Citation

Scholars@Duke

Bryant

Robert Bryant

Phillip Griffiths Professor of Mathematics

My research concerns problems in the geometric theory of partial differential equations.  More specifically, I work on conservation laws for PDE, Finsler geometry, projective geometry, and Riemannian geometry, including calibrations and the theory of holonomy.

Much of my work involves or develops techniques for studying systems of partial differential equations that arise in geometric problems.  Because of their built-in invariance properties, these systems often have special features that make them difficult to treat by the standard tools of analysis, and so my approach uses ideas and techniques from the theory of exterior differential systems, a collection of tools for analyzing such PDE systems that treats them in a coordinate-free way, focusing instead on their properties that are invariant under diffeomorphism or other transformations.

I’m particularly interested in geometric structures constrained by natural conditions, such as Riemannian manifolds whose curvature tensor satisfies some identity or that supports some additional geometric structure, such as a parallel differential form or other geometric structures that satisfy some partial integrability conditions and in constructing examples of such geometric structures, such as Finsler metrics with constant flag curvature.

I am also the Director of the Simons Collaboration Special Holonomy in Geometry, Analysis, and Physics, and a considerable focus of my research and that of my students is directed towards problems in this area.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.