Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons.

Abstract

During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs) involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru). The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a) involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh). The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pbio.1002443

Publication Info

Hueston, Catherine E, Douglas Olsen, Qingyun Li, Sumie Okuwa, Bo Peng, Jianni Wu and Pelin Cayirlioglu Volkan (2016). Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons. PLoS Biol, 14(4). p. e1002443. 10.1371/journal.pbio.1002443 Retrieved from https://hdl.handle.net/10161/13273.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Volkan

Pelin Cayirlioglu Volkan

Associate Professor of Biology

The primary intellectual focus of our lab centers on unraveling the molecular and circuit mechanisms through which social experiences mold the brains and responses of organisms. To investigate these phenomena, we employ the fruit fly nervous system as a model and take an interdisciplinary approach that integrates genetic, behavioral, circuit-mapping, and systems-level molecular tools. Recent advancements in neurogenetics and neuro-visualization techniques in Drosophila melanogaster, a model system with a rich history in behavioral and neurogenetic research, provide us with unique and unprecedented advantages for exploring these questions. Within the realm of fruit flies, several noteworthy observations emerge: 1) Social isolation exerts significant effects on the Drosophila brain and behaviors, 2) well-established connections exist between genes, neural circuits, and stereotyped social behaviors, 3) the utilization of gene editing and neuronal circuit mapping methods is unparalleled, and 4) these resources are further enriched by existing and upcoming connectome data. Leveraging this comprehensive toolset, our overarching objective is to identify genes regulated by social isolation, determine their expression and function in individual neurons and circuits in the brain, and ascertain how variations in these processes influence both brain function and behavioral responses to isolation.

Questions we are interested in:

1- How does social experience and pheromone circuit activity modulate gene expression in the nervous system?

2- How does social experience and pheromone circuit activity modulate circuit structure and function?

3- How does social experience and pheromone circuit activity modulate behaviors like locomotion, feeding, courtship and aggression?

4- How does social experience and pheromone circuit activity modulate physiology like metabolism, circulatory system and immunity?

5- What makes individuals more sensitive or resilient to the effects of social experience?


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.