Show simple item record

dc.contributor.advisor Yoshizumi, Terry T en_US
dc.contributor.author Kim, Sangroh en_US
dc.date.accessioned 2010-05-10T19:55:51Z
dc.date.available 2012-05-01T04:30:05Z
dc.date.issued 2010 en_US
dc.identifier.uri http://hdl.handle.net/10161/2371
dc.description Dissertation en_US
dc.description.abstract <p>Cone beam computed tomography (CBCT) is a 3D x-ray imaging technique in which the x-ray beam is transmitted to an object with wide beam geometry producing a 2D image per projection. Due to its faster image acquisition time, wide coverage length per scan, and fewer motion artifacts, the CBCT system is rapidly replacing the conventional CT system and becoming popular in diagnostic and therapeutic radiology. However, there are few studies performed in CBCT dosimetry because of the absence of a standard dosimetric protocol for CBCT. Computed tomography dose index (CTDI), a standardized metric in conventional CT dosimetry, or direct organ dose measurements have been limitedly used in the CBCT dosimetry.</p> <p>This dissertation investigated the CBCT dosimetry from the CTDI method to the organ, effective dose, risk estimations with physical measurements and Monte Carlo (MC) simulations.</p> <p>An On-Board Imager (OBI, Varian Medical Systems, Palo Alto, CA) was used to perform old and new CBCT scan protocols. The new CBCT protocols introduced both partial and full angle scan modes while the old CBCT protocols only used the full angle mode. A metal-oxide-semiconductor-field-effect transistor (MOSFET) and an ion chamber were employed to measure the cone beam CTDI (CTDI<sub>CB</sub>) in CT phantoms and organ dose in a 5-year-old pediatric anthropomorphic phantom. Radiochromic film was also employed to measure the axial dose profiles. A point dose method was used in the CTDI estimation.</p> <p>The BEAMnrc/EGSnrc MC system was used to simulate the CBCT scans; the MC model of the OBI x-ray tube was built into the system and validated by measurements characterizing the cone beam quality in the aspects of the x-ray spectrum, half value layer (HVL) and dose profiles for both full-fan and half-fan modes. Using the validated MC model, CTDI<sub>CB</sub>, dose profile integral (DPI), cone beam dose length product (DLP<sub>CB</sub>), and organ doses were calculated with voxelized MC CT phantoms or anthropomorphic phantoms. Effective dose and radiation risks were estimated from the organ dose results.</p> <p>The CTDI<sub>CB</sub> of the old protocols were found to be 84 and 45 mGy for standard dose, head and body protocols. The CTDI<sub>CB</sub> of the new protocols were found to be 6.0, 3.2, 29.0, 25.4, 23.8, and 7.7 mGy for the standard dose head, low dose head, high quality head, pelvis, pelvis spotlight, and low dose thorax protocols respectively. The new scan protocols were found to be advantageous in reducing the patient dose while offering acceptable image quality.</p> <p>The mean effective dose (ED) was found to be 37.8 ±0.7 mSv for the standard head and 8.1±0.2 mSv for the low dose head protocols (old) in the 5-year-old phantom. The lifetime attributable risk (LAR) of cancer incidence ranged from 23 to 144 cases per 100,000 exposed persons for the standard-dose mode and from five to 31 cases per 100,000 exposed persons for the low-dose mode. The relative risk (RR) of cancer incidence ranged from 1.003 to 1.054 for the standard-dose mode and from 1.001 to 1.012 for the low-dose mode.</p> <p>The MC method successfully estimated the CTDI<sub>CB</sub>, organ and effective dose despite the heavy calculation time. The point dose method was found to be capable of estimating the CBCT dose with reasonable accuracy in the clinical environment.</p> en_US
dc.format.extent 3120074 bytes
dc.format.mimetype application/pdf
dc.language.iso en_US
dc.subject Physics, Radiation en_US
dc.subject Health Sciences, Radiology en_US
dc.subject BEAMnrc en_US
dc.subject CBCT en_US
dc.subject cone beam en_US
dc.subject CTDI en_US
dc.subject Monte Carlo en_US
dc.title CONE BEAM COMPUTED TOMOGRAPHY (CBCT) DOSIMETRY: MEASUREMENTS AND MONTE CARLO SIMULATIONS en_US
dc.type Dissertation en_US
dc.department Medical Physics en_US
duke.embargo.months 24 en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record