The effect of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method.

Loading...
Thumbnail Image

Date

2010-01-28

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

360
views
714
downloads

Citation Stats

Abstract

While the Stokes-Einstein (SE) equation predicts that the diffusion coefficient of a solute will be inversely proportional to the viscosity of the solvent, this relation is commonly known to fail for solutes, which are the same size or smaller than the solvent. Multiple researchers have reported that for small solutes, the diffusion coefficient is inversely proportional to the viscosity to a fractional power, and that solutes actually diffuse faster than SE predicts. For other solvent systems, attractive solute-solvent interactions, such as hydrogen bonding, are known to retard the diffusion of a solute. Some researchers have interpreted the slower diffusion due to hydrogen bonding as resulting from the effective diffusion of a larger complex of a solute and solvent molecules. We have developed and used a novel micropipette technique, which can form and hold a single microdroplet of water while it dissolves in a diffusion controlled environment into the solvent. This method has been used to examine the diffusion of water in both n-alkanes and n-alcohols. It was found that the polar solute water, diffusing in a solvent with which it cannot hydrogen bond, closely resembles small nonpolar solutes such as xenon and krypton diffusing in n-alkanes, with diffusion coefficients ranging from 12.5x10(-5) cm(2)/s for water in n-pentane to 1.15x10(-5) cm(2)/s for water in hexadecane. Diffusion coefficients were found to be inversely proportional to viscosity to a fractional power, and diffusion coefficients were faster than SE predicts. For water diffusing in a solvent (n-alcohols) with which it can hydrogen bond, diffusion coefficient values ranged from 1.75x10(-5) cm(2)/s in n-methanol to 0.364x10(-5) cm(2)/s in n-octanol, and diffusion was slower than an alkane of corresponding viscosity. We find no evidence for solute-solvent complex diffusion. Rather, it is possible that the small solute water may be retarded by relatively longer residence times (compared to non-H-bonding solvents) as it moves through the liquid.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1063/1.3298857

Publication Info

Su, Jonathan T, P Brent Duncan, Amit Momaya, Arimatti Jutila and David Needham (2010). The effect of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method. J Chem Phys, 132(4). p. 044506. 10.1063/1.3298857 Retrieved from https://hdl.handle.net/10161/3317.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Needham

David Needham

Professor Emeritus in the Thomas Lord Department of Mechanical Engineering and Materials Science

Professor Needham has been at Duke since 1987 and over the years has developed many collaborative and scholarly relationships across the campus and Medical School. He holds Faculty and membership appointments as: Associate Professor of Biomedical Engineering; Center for Bioinspired Materials and Material Systems; Center for Biomolecular and Tissue Engineering; Duke Comprehensive Cancer Center; and the Duke Cancer Institute.  Internationally, he holds a joint appointment as Professor of Translational Therapeutics in the School of Pharmacy, at the University of Nottingham, UK.  He also collaborates with preclinical researchers at the Erasmus University Medical Center, in Rotterdam, NL. 
For the past 35 years Needham's Lab has developed and used a platform technology of micropipette manipulation to manipulate single and pairs of micro bubbles, droplets and particles in order to assess their behavior in well-defined fluids and solution conditions.  Recently his research and development has focused on nucleation, growth and stability of nanoparticles.  Applications of these fundamental particle and interfacial studies have primarily focused on advanced drug delivery treatments for cancer and now COVID19 with a nasal and throat spray prophylactic and early treatment regimen.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.