A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading

Loading...
Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

210
views
884
downloads

Citation Stats

Abstract

This work presents a method for force calibration of rectangular atomic force microscopy (AFM) microcantilevers under heavy fluid loading. Theoretical modeling of the thermal response of microcantilevers is discussed including a fluid-structure interaction model of the cantilever-fluid system that incorporates the results of the fluctuation-dissipation theorem. This model is curve fit to the measured thermal response of a cantilever in de-ionized water and a cost function is used to quantify the difference between the theoretical model and measured data. The curve fit is performed in a way that restricts the search space to parameters that reflect heavy fluid loading conditions. The resulting fitting parameters are used to calibrate the cantilever. For comparison, cantilevers are calibrated using Sader's method in air and the thermal noise method in both air and water. For a set of eight cantilevers ranging in stiffness from 0.050 to 5.8 N/m, the maximum difference between Sader's calibration performed in air and the new method performed in water was 9.4%. A set of three cantilevers that violate the aspect ratio assumption associated with the fluid loading model (length-to-width ratios less than 3.5) ranged in stiffness from 0.85 to 4.7 N/m and yielded differences as high as 17.8%. (C) 2009 American Institute of Physics. [doi:10.1063/1.3263907]

Department

Description

Provenance

Citation

Kennedy,Scott J.;Cole,Daniel G.;Clark,Robert L.. 2009. A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading. Review of Scientific Instruments 80(12): 125103-125103.

Published Version (Please cite this version)

10.1063/1.3263907

Publication Info

Kennedy, Scott J, Daniel G Cole and Robert L Clark (2009). A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading. 10.1063/1.3263907 Retrieved from https://hdl.handle.net/10161/3371.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.