Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration.

Loading...
Thumbnail Image

Date

2010-11-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

413
views
648
downloads

Citation Stats

Abstract

Surgery is one of the most effective and widely used procedures in treating human cancers, but a major problem is that the surgeon often fails to remove the entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor nodules. Here we report the use of a hand-held spectroscopic pen device (termed SpectroPen) and near-infrared contrast agents for intraoperative detection of malignant tumors, based on wavelength-resolved measurements of fluorescence and surface-enhanced Raman scattering (SERS) signals. The SpectroPen utilizes a near-infrared diode laser (emitting at 785 nm) coupled to a compact head unit for light excitation and collection. This pen-shaped device effectively removes silica Raman peaks from the fiber optics and attenuates the reflected excitation light, allowing sensitive analysis of both fluorescence and Raman signals. Its overall performance has been evaluated by using a fluorescent contrast agent (indocyanine green, or ICG) as well as a surface-enhanced Raman scattering (SERS) contrast agent (pegylated colloidal gold). Under in vitro conditions, the detection limits are approximately 2-5 × 10(-11) M for the indocyanine dye and 0.5-1 × 10(-13) M for the SERS contrast agent. Ex vivo tissue penetration data show attenuated but resolvable fluorescence and Raman signals when the contrast agents are buried 5-10 mm deep in fresh animal tissues. In vivo studies using mice bearing bioluminescent 4T1 breast tumors further demonstrate that the tumor borders can be precisely detected preoperatively and intraoperatively, and that the contrast signals are strongly correlated with tumor bioluminescence. After surgery, the SpectroPen device permits further evaluation of both positive and negative tumor margins around the surgical cavity, raising new possibilities for real-time tumor detection and image-guided surgery.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1021/ac102058k

Publication Info

Mohs, AM, MC Mancini, S Singhal, JM Provenzale, B Leyland Jones, MD Wang and S Nie (2010). Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem, 82(21). pp. 9058–9065. 10.1021/ac102058k Retrieved from https://hdl.handle.net/10161/3997.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Provenzale

James Michael Provenzale

Professor of Radiology

I have the following major research areas:
I. Diffusion tensor imaging (an MR technique that measures rate and direction of microscopic water motion) to examine white matter pathways in the brain. This technique is used by many investigators in an attempt to understand white matter microstructure. My recent work has centered on the histological correlation of DTI metrics. In addition, because DTI metrics can vary substantially within a single scanner at multiple time points as well as between scanners, my work is focused on understanding causes of such variability and designing methods to decrease it. 
Since 1998, I have mentored third-year students at Duke University School of Medicine (typically one medical student per year) in both DTI research and perfusion imaging research. Although the research techniques are highly advanced, our implementation of various "user-friendly" software programs allows students with little or no prior experience to analyze data in a productive manner. Our research is also well-suited to individuals with advanced computer skills or an interest in biomedical or electrical engineering. Students work closely with research personnel on a daily basis. They also meet with collaborators from various basic science and clinical departments and me in a laboratory meeting once a week. The focus of these meetings is to plan experiments, refine research methods, discuss experimental results and prepare manuscripts. Students serve as first authors or co-authors on manuscripts based on their specific research project. The results of a number of such projects have been published.

II. Applications of nanotechnology to treatment of cancer (both CNS and non-CNS) and brain disorders. My research involves design and implementation of nanoparticles and fluorescent molecules for cancer diagnosis and therapy. Although I am trained as a neurologist and neuroradiologist, most of my nanotechnology-based research is oriented towards non-CNS tumors such as breast cancer and sarcomas. In the past few years, my Emory and Georgia Tech colleagues and I have conducted research using animals with naturally-occurring tumors at the University of Georgia College of Veterinary Medicine. This work has focused on the use of a handheld device to detect fluorophores that are administered intravenously prior to surgery. We are presently validating the use of this combination of imaging device and contrast agent to guide surgical resection of tumors. I am also interested in development of nanotechnology-based non-invasive and minimally invasive devices that can continuously monitor tumor physiological characteristics and response to therapy. This work is done in conjunction with a number of colleagues in Biomedical Engineering at both Duke and Emory and supported by a number of NIH grants. Finally, I have a strong interest in use of nanotechnology for tissue engineering and regenerative medicine. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.