Efficient construction of nonorthogonal localized molecular orbitals in large systems.

Loading...
Thumbnail Image

Date

2010-08-26

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

254
views
327
downloads

Citation Stats

Abstract

Localized molecular orbitals (LMOs) are much more compact representations of electronic degrees of freedom than canonical molecular orbitals (CMOs). The most compact representation is provided by nonorthogonal localized molecular orbitals (NOLMOs), which are linearly independent but are not orthogonal. Both LMOs and NOLMOs are thus useful for linear-scaling calculations of electronic structures for large systems. Recently, NOLMOs have been successfully applied to linear-scaling calculations with density functional theory (DFT) and to reformulating time-dependent density functional theory (TDDFT) for calculations of excited states and spectroscopy. However, a challenge remains as NOLMO construction from CMOs is still inefficient for large systems. In this work, we develop an efficient method to accelerate the NOLMO construction by using predefined centroids of the NOLMO and thereby removing the nonlinear equality constraints in the original method ( J. Chem. Phys. 2004 , 120 , 9458 and J. Chem. Phys. 2000 , 112 , 4 ). Thus, NOLMO construction becomes an unconstrained optimization. Its efficiency is demonstrated for the selected saturated and conjugated molecules. Our method for fast NOLMO construction should lead to efficient DFT and NOLMO-TDDFT applications to large systems.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1021/jp1027838

Publication Info

Cui, Ganglong, Weihai Fang and Weitao Yang (2010). Efficient construction of nonorthogonal localized molecular orbitals in large systems. J Phys Chem A, 114(33). pp. 8878–8883. 10.1021/jp1027838 Retrieved from https://hdl.handle.net/10161/4069.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Yang

Weitao Yang

Philip Handler Distinguished Professor of Chemistry

Prof. Yang, the Philip Handler Professor of Chemistry, is developing methods for quantum mechanical calculations of large systems and carrying out quantum mechanical simulations of biological systems and nanostructures. His group has developed the linear scaling methods for electronic structure calculations and more recently the QM/MM methods for simulations of chemical reactions in enzymes.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.