Piezopotential gated nanowire--nanotube hybrid field-effect transistor.

Loading...
Thumbnail Image

Date

2010-08-11

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

722
views
638
downloads

Citation Stats

Abstract

We report the first piezoelectric potential gated hybrid field-effect transistors based on nanotubes and nanowires. The device consists of single-walled carbon nanotubes (SWNTs) on the bottom and crossed ZnO piezoelectric fine wire (PFW) on the top with an insulating layer between. Here, SWNTs serve as a carrier transport channel, and a single-crystal ZnO PFW acts as the power-free, contact-free gate or even an energy-harvesting component later on. The piezopotential created by an external force in the ZnO PFW is demonstrated to control the charge transport in the SWNT channel located underneath. The magnitude of the piezopotential in the PFW at a tensile strain of 0.05% is measured to be 0.4-0.6 V. The device is a unique coupling between the piezoelectric property of the ZnO PFW and the semiconductor performance of the SWNT with a full utilization of its mobility. The newly demonstrated device has potential applications as a strain sensor, force/pressure monitor, security trigger, and analog-signal touch screen.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1021/nl1017145

Publication Info

Liu, Weihua, Minbaek Lee, Lei Ding, Jie Liu and Zhong Lin Wang (2010). Piezopotential gated nanowire--nanotube hybrid field-effect transistor. Nano Lett, 10(8). pp. 3084–3089. 10.1021/nl1017145 Retrieved from https://hdl.handle.net/10161/4092.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Liu

Jie Liu

George Barth Geller Distinguished Professor of Chemistry

Dr. Liu’s research interests are focusing on the chemistry and material science of nanoscale materials. Specific topics in his current research program include: Self-assembly of nanostructures; Preparation and chemical functionalization of single walled carbon nanotubes; Developing carbon nanotube based chemical and biological sensors; SPM based fabrication and modification of functional nanostructures.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.