Viscous state effect on the activity of Fe nanocatalysts.

Abstract

Many applications of nanotubes and nanowires require controlled bottom-up engineering of these nanostructures. In catalytic chemical vapor deposition, the thermo-kinetic state of the nanocatalysts near the melting point is one of the factors ruling the morphology of the grown structures. We present theoretical and experimental evidence of a viscous state for nanoparticles near their melting point. The state exists over a temperature range scaling inversely with the catalyst size, resulting in enhanced self-diffusion and fluidity across the solid-liquid transformation. The overall effect of this phenomenon on the growth of nanotubes is that, for a given temperature, smaller nanoparticles have a larger reaction rate than larger catalysts.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1021/nn101883s

Publication Info

Cervantes-Sodi, Felipe, Thomas P McNicholas, Jay G Simmons, Jie Liu, Gabor Csányi, Andrea C Ferrari and Stefano Curtarolo (2010). Viscous state effect on the activity of Fe nanocatalysts. ACS Nano, 4(11). pp. 6950–6956. 10.1021/nn101883s Retrieved from https://hdl.handle.net/10161/4101.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Liu

Jie Liu

George Barth Geller Distinguished Professor of Chemistry

Dr. Liu’s research interests are focusing on the chemistry and material science of nanoscale materials. Specific topics in his current research program include: Self-assembly of nanostructures; Preparation and chemical functionalization of single walled carbon nanotubes; Developing carbon nanotube based chemical and biological sensors; SPM based fabrication and modification of functional nanostructures.

Curtarolo

Stefano Curtarolo

Edmund T. Pratt Jr. School Distinguished Professor of Mechanical Engineering and Materials Science

RESEARCH FIELDS

  • Artificial Intelligence Materials Science
  • Autonomous Materials Design
  • Computational Materials Science
  • High-Entropy Disordered and Amorphous Systems
  • Materials for Energy Applications
  • Materials for Aerospace Applications
  • Materials for Deep Space Exploration

The research is multidisciplinary and makes use of state of the art techniques from fields like materials science, chemistry, physics, quantum mechanics, mathematics and computer science.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.