High-field FMRI reveals brain activation patterns underlying saccade execution in the human superior colliculus.

Abstract

BACKGROUND: The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans. METHODOLOGY/PRINCIPAL FINDINGS: The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar. CONCLUSIONS/SIGNIFICANCE: Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0008691

Publication Info

Krebs, Ruth M, Marty G Woldorff, Claus Tempelmann, Nils Bodammer, Toemme Noesselt, Carsten N Boehler, Henning Scheich, Jens-Max Hopf, et al. (2010). High-field FMRI reveals brain activation patterns underlying saccade execution in the human superior colliculus. PloS one, 5(1). p. e8691. 10.1371/journal.pone.0008691 Retrieved from https://hdl.handle.net/10161/4520.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Woldorff

Marty G. Woldorff

Professor in Psychiatry and Behavioral Sciences

Dr. Woldorff's main research interest is in the cognitive neuroscience of attention. At each and every moment of our lives, we are bombarded by a welter of sensory information coming at us from a myriad of directions and through our various sensory modalities -- much more than we can fully process. We must continuously select and extract the most important information from this welter of sensory inputs. How the human brain accomplishes this is one of the core challenges of modern cognitive neuroscience. Dr. Woldorff uses a combination of electrophysiological (ERP, MEG) and functional neuroimaging (fMRI) methods to study the time course, functional neuroanatomy, and mechanisms of attentional processes. This multimethodological approach is directed along several main lines of research: (1) The influence of attention on sensory and perceptual processing; (2) Cognitive and attentional control mechanisms; (3) The role of attention in multisensory environments; (4) The interactive relationship between attention and reward; and (5) The role of attention in perceptual awareness.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.