Show simple item record

dc.contributor.advisor Richter, Daniel deB en_US
dc.contributor.author Mobley, Megan Leigh en_US
dc.date.accessioned 2012-01-10T15:58:36Z
dc.date.available 2012-01-10T15:58:36Z
dc.date.issued 2011 en_US
dc.identifier.uri http://hdl.handle.net/10161/4992
dc.description Dissertation en_US
dc.description.abstract <p>This study seeks to investigate the dynamics of dead plant carbon over fifty years of old-field forest development at the Calhoun Long Term Soil-Ecosystem Experiment (LTSE) in South Carolina, USA. Emphasis is on the transition phase of the forest, which is less well studied than the establishment and early thinning phase or the steady state phase. At the Calhoun LTSE, the biogeochemical and ecosystem changes associated with old field forest development have been documented through repeated tree measurements and deep soil sampling, and archiving of those soils, which now allow us to examine changes that have occurred over the course of forest development to date.</p><p> In this dissertation, I first quantify the accumulation of woody detritus on the surface of the soil as well as in the soil profile over fifty years, and estimate the mean residence times of that detrital carbon storage. Knowing that large accumulations of C-rich organic matter have piled onto the soil surface, the latter chapters of my dissertation investigate how that forest-derived organic carbon has been incorporated into mineral soils. I do this first by examining concentrations of dissolved organic carbon and other constituents in soil solutions throughout the ecosystem profile and then by quantifying changes in solid state soil carbon quantity and quality, both in bulk soils and in soil fractions that are thought to have different C sources, stabilities, and residence times. To conclude this dissertation, I present the 50-year C budget of the Calhoun LTSE, including live and dead plant carbon pools, to quantify the increasing importance of detrital C to the ecosystem over time.</p><p>This exceptional long term soil ecosystem study shows that 50 years of pine forest development on a former cotton field have not increased mineral soil carbon storage. Tree biomass accumulated rapidly from the time seedlings were planted through the establishment phase, followed by accumulations of leaf litter and woody detritus. Large quantities of dissolved organic carbon leached from the O-horizons into mineral soils. The response of mineral soil C stocks to this flood of C inputs varied by depth. The most surficial soil (0-7.5cm), saw a large, but lagged, increase in soil organic carbon (SOC) concentration over time, an accumulation almost entirely due to an increase of light fraction, particulate organic matter. Yet in the deepest soils sampled, soil carbon content declined over time, and in fact the loss of SOC in deep soils was sufficient to negate all of the C gains in shallower soils. This deep soil organic matter was apparently lost from a poorly understood, exchangeable pool of SOM. This loss of deep SOC, and lack of change in total SOC, flies in the face of the general understanding of field to forest conversions resulting in net increases in soil carbon. These long term observations provide evidence that the loss of soil carbon was due to priming of SOM decomposition by enhanced transpiration, C inputs, and N demand by the growing trees. These results suggest that large accumulations of carbon aboveground do not guarantee similar changes below.</p> en_US
dc.subject Ecology en_US
dc.subject Environmental science en_US
dc.subject Soil sciences en_US
dc.subject coarse woody detritus en_US
dc.subject dissolved organic carbon en_US
dc.subject ecosystem ecology en_US
dc.subject land use change en_US
dc.subject old-field succession en_US
dc.subject soil carbon sequestration en_US
dc.title An Ecosystem Approach to Dead Plant Carbon over 50 years of Old-Field Forest Development en_US
dc.type Dissertation en_US
dc.department Ecology en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record