Population Genetics of Species Associated with Deep-sea Hydrothermal Vents in the Western Pacific

Loading...
Thumbnail Image

Date

2012

Authors

Thaler, Andrew David

Advisors

Van Dover, Cindy L

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

448
views
424
downloads

Abstract

Genetic diversity, population structure, and connectivity influence interactions among communities and populations. At hydrothermal vents in the western pacific, population structure in vent-associated species could occur at spatial scales ranging from vent sites separated by a few hundred meters to oceanic basins separated by more than 3000 kilometers. The spatial scale of population structure has important conservation implications; species that are well-connected across large geographic regions are more resilient to natural and anthropogenic disturbance. This dissertation examines the genetic diversity, population structure, and connectivity of 3 vent-associated species in the western Pacific. It first presents results from the development of microsatellite primers for Ifremeria nautilei, a deep-sea vent associated snail, then uses mitochondrial COI sequences and a suite of microsatellite markers to examine the broader connectivity of three vent-associated species, Ifremeria nautilei, Chorocaris sp. 2, and Olgasolaris tollmanni, across three back-arc basins in the western Pacific.

Within Manus Basin, no significant genetic differentiation was detected in populations of Ifremeria nautilei (based on COI and microsatellite), Chorocaris sp. 2 (based on COI and microsatellite), or Olgasolaris tollmanni (based on COI). A previously documented low-abundance cryptic species, Chorocaris sp. 1, was detected from a single site, South Su (based on COI). The population of I. nautilei in Manus Basin was found to be significantly differentiated from a second population that appeared to be panmictic across North Fiji and Lau Basin (based on COI and microsatellites). Chorocaris sp. 2 was also found to be significantly differentiated between Manus and North Fiji Basin (based on COI). Both I. nautilei and Chorocaris sp. 2 showed signs of potential low-level migration between Manus and other southwestern Pacific basins. O. tollmanni was undifferentiated between Manus and Lau Basin (based on COI). It is likely that a variable impedance filter exists that limits the realized dispersal of some, but not all species between Manus Basin and other western Pacific back-arc basins. The presence of a variable filter has implications for the conservation and management of hydrothermal vents in Manus Basin, as it is unclear what effects sustained anthropogenic disturbance will have on isolated populations of I. nautilei and Chorocaris sp. 2.

Description

Provenance

Citation

Citation

Thaler, Andrew David (2012). Population Genetics of Species Associated with Deep-sea Hydrothermal Vents in the Western Pacific. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/6111.

Collections


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.