Morphological characteristics of urban water bodies: mechanisms of change and implications for ecosystem function.

Loading...
Thumbnail Image

Date

2014-07

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

191
views
956
downloads

Abstract

The size, shape, and connectivity of water bodies (lakes, ponds, and wetlands) can have important effects on ecological communities and ecosystem processes, but how these characteristics are influenced by land use and land cover change over broad spatial scales is not known. Intensive alteration of water bodies during urban development, including construction, burial, drainage, and reshaping, may select for certain morphometric characteristics and influence the types of water bodies present in cities. We used a database of over one million water bodies in 100 cities across the conterminous United States to compare the size distributions, connectivity (as intersection with surface flow lines), and shape (as measured by shoreline development factor) of water bodies in different land cover classes. Water bodies in all urban land covers were dominated by lakes and ponds, while reservoirs and wetlands comprised only a small fraction of the sample. In urban land covers, as compared to surrounding undeveloped land, water body size distributions converged on moderate sizes, shapes toward less tortuous shorelines, and the number and area of water bodies that intersected surface flow lines (i.e., streams and rivers) decreased. Potential mechanisms responsible for changing the characteristics of urban water bodies include: preferential removal, physical reshaping or addition of water bodies, and selection of locations for development. The relative contributions of each mechanism likely change as cities grow. The larger size and reduced surface connectivity of urban water bodies may affect the role of internal dynamics and sensitivity to catchment processes. More broadly, these results illustrate the complex nature of urban watersheds and highlight the need to develop a conceptual framework for urban water bodies.

Department

Description

Provenance

Subjects

Citation

Scholars@Duke

Heffernan

James Brendan Heffernan

Associate Professor of Ecosystem Ecology and Ecohydrology

I am interested in major changes in ecosystem structure, particularly in streams, rivers and wetlands. My work focuses on feedbacks among ecological, physical, and biogeochemical processes, and uses a wide range of tools and approaches. I am particularly interested in projects that address both basic ecological theory and pressing environmental problems. Increasingly, we are applying tools and theories developed for local ecosystems to better understand ecological patterns and mechanisms at regional and continental scales.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.