Hauser, K2015-10-232014-01-010278-3649https://hdl.handle.net/10161/10778This paper formulates a new minimum constraint removal (MCR) motion planning problem in which the objective is to remove the fewest geometric constraints necessary to connect a start and goal state with a free path. It describes a probabilistic roadmap motion planner for MCR in continuous configuration spaces that operates by constructing increasingly refined roadmaps, and efficiently solves discrete MCR problems on these networks. A number of new theoretical results are given for discrete MCR, including a proof that it is NP-hard by reduction from SET-COVER. Two search algorithms are described that perform well in practice. The motion planner is proven to produce the optimal MCR with probability approaching 1 as more time is spent, and its convergence rate is improved with various efficient sampling strategies. It is demonstrated on three example applications: generating human-interpretable excuses for failure, motion planning under uncertainty, and rearranging movable obstacles. © The Author(s) 2013.The minimum constraint removal problem with three robotics applicationsJournal article1741-3176