Moya-Mendez, Mary EOgbonna, ChiagoziemEzekian, Jordan ERosamilia, Michael BPrange, Lyndseyde la Uz, CaridadKim, Jeffrey JHoward, TaylorGarcia, JohnNussbaum, RobertTruty, RebeccaCallis, Thomas EFunk, EmilyHeyes, MatthewDear, Guy de LisleCarboni, Michael PIdriss, Salim FMikati, Mohamad ALandstrom, Andrew P2022-06-012022-06-012021-092047-99802047-9980https://hdl.handle.net/10161/25069Background Pathogenic variation in the <i>ATP1A3</i>-encoded sodium-potassium ATPase, ATP1A3, is responsible for alternating hemiplegia of childhood (AHC). Although these patients experience a high rate of sudden unexpected death in epilepsy, the pathophysiologic basis for this risk remains unknown. The objective was to determine the role of <i>ATP1A3</i> genetic variants on cardiac outcomes as determined by QT and corrected QT (QTc) measurements. Methods and Results We analyzed 12-lead ECG recordings from 62 patients (male subjects=31, female subjects=31) referred for AHC evaluation. Patients were grouped according to AHC presentation (typical versus atypical), <i>ATP1A3</i> variant status (positive versus negative), and <i>ATP1A3</i> variant (D801N versus other variants). Manual remeasurements of QT intervals and QTc calculations were performed by 2 pediatric electrophysiologists. QTc measurements were significantly shorter in patients with positive <i>ATP1A3</i> variant status (<i>P</i><0.001) than in patients with genotype-negative status, and significantly shorter in patients with the ATP1A3-D801N variant than patients with other variants (<i>P</i><0.001). The mean QTc for ATP1A3-D801N was 344.9 milliseconds, which varied little with age, and remained <370 milliseconds throughout adulthood. <i>ATP1A3</i> genotype status was significantly associated with shortened QTc by multivariant regression analysis. Two patients with the ATP1A3-D801N variant experienced ventricular fibrillation, resulting in death in 1 patient. Rare variants in <i>ATP1A3</i> were identified in a large cohort of genotype-negative patients referred for arrhythmia and sudden unexplained death. Conclusions Patients with AHC who carry the ATP1A3-D801N variant have significantly shorter QTc intervals and an increased likelihood of experiencing bradycardia associated with life-threatening arrhythmias. <i>ATP1A3</i> variants may represent an independent cause of sudden unexplained death. Patients with AHC should be evaluated to identify risk of sudden death.HumansHemiplegiaBradycardiaVentricular FibrillationDisease SusceptibilityGenotypeMutationChild, PreschoolFemaleMaleSodium-Potassium-Exchanging ATPaseArrhythmias, Cardiac<i>ATP1A3</i>-Encoded Sodium-Potassium ATPase Subunit Alpha 3 D801N Variant Is Associated With Shortened QT Interval and Predisposition to Ventricular Fibrillation Preceded by Bradycardia.Journal article2022-06-01