Rose, BMRubin, DCikota, ADeustua, SEDixon, SFruchter, AJones, DORiess, AGScolnic, DM2020-04-232020-04-23https://hdl.handle.net/10161/20490Type Ia Supernovae (SNe Ia) are powerful standardized candles for constraining the cosmological model and provided the first evidence of accelerated expansion. Their precision derives from empirical correlations now measured from $>1000$ SNe Ia between their luminosities, light curve shapes, colors and most recently a modest relationship with the mass of their host galaxy. As mass correlates with other host properties, these have been investigated to improve SN Ia standardization though none have been shown to significantly alter the determination of cosmological parameters. We re-examine a recent claim, based on 34 SN Ia in nearby passive host galaxies, of a 0.05 mag/Gyr dependence of standardized SN Ia luminosity on host age which if extrapolate to higher redshifts, might accrue to 0.25 mag challenging the inference of dark energy. We reanalyze this sample of hosts using both the original method and a Bayesian Hierarchical Model and find after a fuller accounting of the errors the significance for a dependence on age to be $\leq2\sigma$ and $\sim1\sigma$ after removal of a single poorly-measured SN. To test the claim that a trend seen in old stellar populations can be applied to younger ages, we extend our analysis to a larger sample which includes young hosts. We find the residual dependence of host age (after all standardization typically employed for cosmological measurements) to be $0.0011\pm0.0018$ mag/Gyr ($0.6\sigma$) for 254 SNe Ia from the Pantheon sample, consistent with no trend and strongly ruling out the large but low significance trend claimed from the passive hosts.astro-ph.COastro-ph.COastro-ph.GANo Evidence for Type Ia Supernova Luminosity Evolution: Evidence for Dark Energy is RobustJournal article2020-04-23