Urzhumov, YAKundtz, NBSmith, DRPendry, JB2012-05-292011-02-012040-8978https://hdl.handle.net/10161/5724We review several approaches to optical invisibility designed using transformation optics (TO) and optical conformal mapping (CM) techniques. TO is a general framework for solving inverse scattering problems based on mimicking spatial coordinate transformations with distributions of material properties. There are two essential steps in the design of TO media: first, a coordinate transformation that achieves some desired functionality, resulting in a continuous spatial distribution of constitutive parameters that are generally anisotropic; and, second, the reduction of the derived continuous constitutive parameters to a metamaterial that serves as a stepwise approximation. We focus here on the first step, discussing the merits of various TO strategies proposed for the long-sought 'invisibility cloak'-a structure that renders opaque objects invisible. We also evaluate the cloaking capabilities of structures designed by the related CM approach, which makes use of conformal mapping to achieve index-only material distributions. The performance of the various cloaks is evaluated and compared using a universal measure-the total (all-angle) scattering cross section. © 2011 IOP Publishing Ltd.en-USCross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approachesJournal article2040-8986