Urzhumov, YASmith, DR2012-01-182012-01-182012-01-18https://hdl.handle.net/10161/5075Recently, a path towards macroscopic, transparent optical cloaking devices that may conceal objects spanning millions of wavelengths has been proposed [1]. Such devices are designed using transformation optics (TO) [2,3]. In this paper, we offer further analysis and improvements to the concept using the method of geometrical optics extended to complex photonic media with an arbitrary dispersion relation. A technique for solving the highly nonlinear partial differential equation of the eikonal using the finite element method is presented. Aberra-tions caused by the non-quadratic part of the dispersion relation are demonstrated quantitatively in a numerical experiment. An analytical argument based on the scalability of the eikonal phase is presented, which points to-wards a solution that removes this type of aberration in each order of the k-perturbation theory, thus restoring the perfect cloaking solution.en-USTowards macroscopic optical invisibility devices: geometrical optics of complex materialsJournal article