Scholarly Articles
Permanent URI for this collection
To make your scholarly work available here, please see information about Duke’s open access policy and the submission process on the ScholarWorks web site.
Browse
Browsing Scholarly Articles by Affiliation "Biochemistry"
Now showing 1 - 20 of 330
Results Per Page
Sort Options
Item Open Access 1,2-Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway.(Mol Microbiol, 2016-12-23) Vences-Guzmán, Miguel Ángel; Paula Goetting-Minesky, M; Guan, Ziqiang; Castillo-Ramirez, Santiago; Córdoba-Castro, Luz América; López-Lara, Isabel M; Geiger, Otto; Sohlenkamp, Christian; Christopher Fenno, JTreponema denticola synthesizes phosphatidylcholine through a licCA-dependent CDP-choline pathway identified only in the genus Treponema. However, the mechanism of conversion of CDP-choline to phosphatidylcholine remained unclear. We report here characterization of TDE0021 (herein designated cpt) encoding a 1,2-diacylglycerol choline phosphotransferase homologous to choline phosphotransferases that catalyze the final step of the highly conserved Kennedy pathway for phosphatidylcholine synthesis in eukaryotes. T. denticola Cpt catalyzed in vitro phosphatidylcholine formation from CDP-choline and diacylglycerol, and full activity required divalent manganese. Allelic replacement mutagenesis of cpt in T. denticola resulted in abrogation of phosphatidylcholine synthesis. T. denticola Cpt complemented a Saccharomyces cerevisiae CPT1 mutant, and expression of the entire T. denticola LicCA-Cpt pathway in E. coli resulted in phosphatidylcholine biosynthesis. Our findings show that T. denticola possesses a unique phosphatidylcholine synthesis pathway combining conserved prokaryotic choline kinase and CTP:phosphocholine cytidylyltransferase activities with a 1,2-diacylglycerol choline phosphotransferase that is common in eukaryotes. Other than in a subset of mammalian host-associated Treponema that includes T. pallidum, this pathway is found in neither bacteria nor Archaea. Molecular dating analysis of the Cpt gene family suggests that a horizontal gene transfer event introduced this gene into an ancestral Treponema well after its divergence from other spirochetes.Item Open Access A beta-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination.(Proc Natl Acad Sci U S A, 1993-02-15) Schleicher, S; Boekhoff, I; Arriza, J; Lefkowitz, RJ; Breer, HWe have previously shown that second-messenger-dependent kinases (cAMP-dependent kinase, protein kinase C) in the olfactory system are essential in terminating second-messenger signaling in response to odorants. We now document that subtype 2 of the beta-adrenergic receptor kinase (beta ARK) is also involved in this process. By using subtype-specific antibodies to beta ARK-1 and beta ARK-2, we show that beta ARK-2 is preferentially expressed in the olfactory epithelium in contrast to findings in most other tissues. Heparin, an inhibitor of beta ARK, as well as anti-beta ARK-2 antibodies, (i) completely prevents the rapid decline of second-messenger signals (desensitization) that follows odorant stimulation and (ii) strongly inhibits odorant-induced phosphorylation of olfactory ciliary proteins. In contrast, beta ARK-1 antibodies are without effect. Inhibitors of protein kinase A and protein kinase C also block odorant-induced desensitization and phosphorylation. These data suggest that a sequential interplay of second-messenger-dependent and receptor-specific kinases is functionally involved in olfactory desensitization.Item Open Access A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins.(Proc Natl Acad Sci U S A, 1998-07-21) Hall, RA; Ostedgaard, LS; Premont, RT; Blitzer, JT; Rahman, N; Welsh, MJ; Lefkowitz, RJThe Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the beta2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the beta2 receptor. Mutagenesis studies of the beta2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the beta2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling.Item Open Access A chemical glycoproteomics platform reveals O-GlcNAcylation of mitochondrial voltage-dependent anion channel 2.(Cell Rep, 2013-10-31) Palaniappan, K; Hangauer, M; Smith, T; Smart, B; Pitcher, A; Cheng, E; Bertozzi, C; Boyce, MProtein modification by O-linked β-N-acetylglucosamine (O-GlcNAc) is a critical cell signaling modality, but identifying signal-specific O-GlcNAcylation events remains a significant experimental challenge. Here, we describe a method for visualizing and analyzing organelle- and stimulus-specific O-GlcNAcylated proteins and use it to identify the mitochondrial voltage-dependent anion channel 2 (VDAC2) as an O-GlcNAc substrate. VDAC2(-/-) cells resist the mitochondrial dysfunction and apoptosis caused by global O-GlcNAc perturbation, demonstrating a functional connection between O-GlcNAc signaling and mitochondrial physiology through VDAC2. More broadly, our method will enable the discovery of signal-specific O-GlcNAcylation events in a wide array of experimental contexts.Item Open Access A chemical method for labeling lysine methyltransferase substrates.(Chembiochem : a European journal of chemical biology, 2011-01) Binda, Olivier; Boyce, Michael; Rush, Jason S; Palaniappan, Krishnan K; Bertozzi, Carolyn R; Gozani, OrSeveral protein lysine methyltransferases (PKMTs) modify histones to regulate chromatin-dependent cellular processes, such as transcription, DNA replication and DNA damage repair. PKMTs are likely to have many additional substrates in addition to histones, but relatively few nonhistone substrates have been characterized, and the substrate specificity for many PKMTs has yet to be defined. Thus, new unbiased methods are needed to find PKMT substrates. Here, we describe a chemical biology approach for unbiased, proteome-wide identification of novel PKMT substrates. Our strategy makes use of an alkyne-bearing S-adenosylmethionine (SAM) analogue, which is accepted by the PKMT, SETDB1, as a cofactor, resulting in the enzymatic attachment of a terminal alkyne to its substrate. Such labeled proteins can then be treated with azide-functionalized probes to ligate affinity handles or fluorophores to the PKMT substrates. As a proof-of-concept, we have used SETDB1 to transfer the alkyne moiety from the SAM analogue onto a recombinant histone H3 substrate. We anticipate that this chemical method will find broad use in epigenetics to enable unbiased searches for new PKMT substrates by using recombinant enzymes and unnatural SAM cofactors to label and purify many substrates simultaneously from complex organelle or cell extracts.Item Open Access A constitutively active mutant beta 2-adrenergic receptor is constitutively desensitized and phosphorylated.(Proc Natl Acad Sci U S A, 1994-03-29) Pei, G; Samama, P; Lohse, M; Wang, M; Codina, J; Lefkowitz, RJThe beta 2-adrenergic receptor (beta 2AR) can be constitutively activated by mutations in the third intracellular loop. Whereas the wild-type receptor exists predominantly in an inactive conformation (R) in the absence of agonist, the mutant receptor appears to spontaneously adopt an active conformation (R*). We now demonstrate that not only is the mutant beta 2AR constitutively active, it is also constitutively desensitized and down-regulated. To assess whether the mutant receptor can constitutively engage a known element of the cellular desensitization machinery, the receptor was purified and reconstituted into phospholipid vesicles. These preparations retained the essential properties of the constitutively active mutant receptor: agonist-independent activity [to stimulate guanine nucleotide-binding protein (Gs)-GTPase] and agonist-specific increase in binding affinity. Moreover, the purified mutant receptor, in the absence of agonist, was phosphorylated by recombinant beta AR-specific kinase (beta ARK) in a fashion comparable to the agonist-occupied wild-type receptor. Thus, the conformation of the mutated receptor is equivalent to the active conformation (R*), which stimulates Gs protein and is identical to the beta ARK substrate.Item Open Access A decade of caspases.(Oncogene, 2003-11) Degterev, Alexei; Boyce, Michael; Yuan, JunyingCaspases are a family of cysteine proteases that play important roles in regulating apoptosis. A decade of research has generated a wealth of information on the signal transduction pathways mediated by caspases, the distinct functions of individual caspases and the mechanisms by which caspases mediate apoptosis and a variety of physiological and pathological processes.Item Open Access A genome-wide RNAi screen reveals multiple regulators of caspase activation.(The Journal of cell biology, 2007-11-12) Yi, Caroline H; Sogah, Dodzie K; Boyce, Michael; Degterev, Alexei; Christofferson, Dana E; Yuan, JunyingApoptosis is an evolutionally conserved cellular suicide mechanism that can be activated in response to a variety of stressful stimuli. Increasing evidence suggests that apoptotic regulation relies on specialized cell death signaling pathways and also integrates diverse signals from additional regulatory circuits, including those of cellular homeostasis. We present a genome-wide RNA interference screen to systematically identify regulators of apoptosis induced by DNA damage in Drosophila melanogaster cells. We identify 47 double- stranded RNA that target a functionally diverse set of genes, including several with a known function in promoting cell death. Further characterization uncovers 10 genes that influence caspase activation upon the removal of Drosophila inhibitor of apoptosis 1. This set includes the Drosophila initiator caspase Dronc and, surprisingly, several metabolic regulators, a candidate tumor suppressor, Charlatan, and an N-acetyltransferase, ARD1. Importantly, several of these genes show functional conservation in regulating apoptosis in mammalian cells. Our data suggest a previously unappreciated fundamental connection between various cellular processes and caspase-dependent cell death.Item Open Access A magnificent time with the "magnificent seven" transmembrane spanning receptors.(Circ Res, 2003-03-07) Lefkowitz, Robert JItem Open Access A Mitochondrial Lipid Phosphatase in Cell Metabolism and Membrane Organization(FASEB JOURNAL, 2010-04) Zhang, Ji; Guan, Ziqiang; Murphy, Anne; Wiley, Sandra; Perkins, Guy; Worby, Carolyn; Engel, James; Raetz, Christian RH; Dowhan, William; Dixon, JackItem Open Access A novel glycoproteomics workflow reveals dynamic O-GlcNAcylation of COPγ1 as a candidate regulator of protein trafficking(Frontiers in Endocrinology, 2018-10-15) Cox, Nathan J; Luo, Peter M; Smith, Timothy J; Bisnett, Brittany J; Soderblom, Erik J; Boyce, MichaelCopyright © 2018 Cox, Luo, Smith, Bisnett, Soderblom and Boyce. O-linked ß-N-acetylglucosamine (O-GlcNAc) is an abundant and essential intracellular form of protein glycosylation in animals and plants. In humans, dysregulation of O-GlcNAcylation occurs in a wide range of diseases, including cancer, diabetes, and neurodegeneration. Since its discovery more than 30 years ago, great strides have been made in understanding central aspects of O-GlcNAc signaling, including identifying thousands of its substrates and characterizing the enzymes that govern it. However, while many O-GlcNAcylated proteins have been reported, only a small subset of these change their glycosylation status in response to a typical stimulus or stress. Identifying the functionally important O-GlcNAcylation changes in any given signaling context remains a significant challenge in the field. To address this need, we leveraged chemical biology and quantitative mass spectrometry methods to create a new glycoproteomics workflow for profiling stimulus-dependent changes in O-GlcNAcylated proteins. In proof-of-principle experiments, we used this new workflow to interrogate changes in O-GlcNAc substrates in mammalian protein trafficking pathways. Interestingly, our results revealed dynamic O-GlcNAcylation of COPγ1, an essential component of the coat protein I (COPI) complex that mediates Golgi protein trafficking. Moreover, we detected 11 O-GlcNAc moieties on COPγ1 and found that this modification is reduced by a model secretory stress that halts COPI trafficking. Our results suggest that O-GlcNAcylation may regulate the mammalian COPI system, analogous to its previously reported roles in other protein trafficking pathways. More broadly, our glycoproteomics workflow is applicable to myriad systems and stimuli, empowering future studies of O-GlcNAc in a host of biological contexts.Item Open Access A Phosphoinositide Binding Module Controls TMEM16A Desensitization(2018-11-20) Le, Son C; Jia, Zhiguang; Chen, Jianhan; Yang, HuangheItem Open Access A Scalable Synthesis of the Difluoromethyl-allo-threonyl Hydroxamate-Based LpxC Inhibitor LPC-058.(J Org Chem, 2016-05-20) Liang, Xiaofei; Gopalaswamy, Ramesh; Navas, Frank; Toone, Eric J; Zhou, PeiThe difluoromethyl-allo-threonyl hydroxamate-based compound LPC-058 is a potent inhibitor of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) in Gram-negative bacteria. A scalable synthesis of this compound is described. The key step in the synthetic sequence is a transition metal/base-catalyzed aldol reaction of methyl isocyanoacetate and difluoroacetone, giving rise to 4-(methoxycarbonyl)-5,5-disubstituted 2-oxazoline. A simple NMR-based determination of enantiomeric purity is also described.Item Open Access A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress.(Science (New York, N.Y.), 2005-02) Boyce, Michael; Bryant, Kevin F; Jousse, Céline; Long, Kai; Harding, Heather P; Scheuner, Donalyn; Kaufman, Randal J; Ma, Dawei; Coen, Donald M; Ron, David; Yuan, JunyingMost protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.Item Open Access A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing.(J Extracell Vesicles, 2016) Vogel, Robert; Coumans, Frank AW; Maltesen, Raluca G; Böing, Anita N; Bonnington, Katherine E; Broekman, Marike L; Broom, Murray F; Buzás, Edit I; Christiansen, Gunna; Hajji, Najat; Kristensen, Søren R; Kuehn, Meta J; Lund, Sigrid M; Maas, Sybren LN; Nieuwland, Rienk; Osteikoetxea, Xabier; Schnoor, Rosalie; Scicluna, Benjamin J; Shambrook, Mitch; de Vrij, Jeroen; Mann, Stephen I; Hill, Andrew F; Pedersen, ShonaBACKGROUND: Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. MATERIALS AND METHODS: A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. RESULTS: PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. CONCLUSION: The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.Item Open Access A Sweet Embrace: Control of Protein-Protein Interactions by O-Linked β-N-Acetylglucosamine.(Biochemistry, 2018-01) Tarbet, Heather J; Toleman, Clifford A; Boyce, MichaelO-Linked β-N-acetylglucosamine (O-GlcNAc) is a critical post-translational modification (PTM) of thousands of intracellular proteins. Reversible O-GlcNAcylation governs many aspects of cell physiology and is dysregulated in numerous human diseases. Despite this broad pathophysiological significance, major aspects of O-GlcNAc signaling remain poorly understood, including the biochemical mechanisms through which O-GlcNAc transduces information. Recent work from many laboratories, including our own, has revealed that O-GlcNAc, like other intracellular PTMs, can control its substrates' functions by inhibiting or inducing protein-protein interactions. This dynamic regulation of multiprotein complexes exerts diverse downstream signaling effects in a range of processes, cell types, and organisms. Here, we review the literature about O-GlcNAc-regulated protein-protein interactions and suggest important questions for future studies in the field.Item Open Access A tale of two callings.(J Clin Invest, 2011-10) Lefkowitz, Robert JItem Open Access A Unified Model for Treadmilling and Nucleation of Single-Stranded FtsZ Protofilaments.(Biophysical journal, 2020-08) Corbin, Lauren C; Erickson, Harold PBacterial cell division is tightly coupled to the dynamic behavior of FtsZ, a tubulin homolog. Recent experimental work in vitro and in vivo has attributed FtsZ's assembly dynamics to treadmilling, in which subunits add to the bottom and dissociate from the top of protofilaments. However, the molecular mechanisms producing treadmilling have yet to be characterized and quantified. We have developed a Monte Carlo model for FtsZ assembly that explains treadmilling, and also explains assembly nucleation by the same mechanisms. A key element of the model is a conformational change from R (relaxed), which is highly favored for monomers, to T (tense), which is favored for subunits in a protofilament. This model was created in MATLAB. Kinetic parameters were converted to probabilities of execution during a single, small time step. These were used to stochastically determine FtsZ dynamics. Our model is able to accurately describe the results of several in vitro and in vivo studies for a variety of FtsZ flavors. With standard conditions, the model FtsZ polymerized and produced protofilaments that treadmilled at 23 nm/s, hydrolyzed GTP at 3.6-3.7 GTP min-1 FtsZ-1, and had an average length of 30-40 subunits, all similar to experimental results. Adding a bottom capper resulted in shorter protofilaments and higher GTPase, similar to the effect of the known bottom capper protein MciZ. The model could match nucleation kinetics of several flavors of FtsZ using the same parameters as treadmilling and varying only the R to T transition of monomers.Item Open Access Accelerating crystal structure determination with iterative AlphaFold prediction.(Acta crystallographica. Section D, Structural biology, 2023-03) Terwilliger, Thomas C; Afonine, Pavel V; Liebschner, Dorothee; Croll, Tristan I; McCoy, Airlie J; Oeffner, Robert D; Williams, Christopher J; Poon, Billy K; Richardson, Jane S; Read, Randy J; Adams, Paul DExperimental structure determination can be accelerated with artificial intelligence (AI)-based structure-prediction methods such as AlphaFold. Here, an automatic procedure requiring only sequence information and crystallographic data is presented that uses AlphaFold predictions to produce an electron-density map and a structural model. Iterating through cycles of structure prediction is a key element of this procedure: a predicted model rebuilt in one cycle is used as a template for prediction in the next cycle. This procedure was applied to X-ray data for 215 structures released by the Protein Data Bank in a recent six-month period. In 87% of cases our procedure yielded a model with at least 50% of Cα atoms matching those in the deposited models within 2 Å. Predictions from the iterative template-guided prediction procedure were more accurate than those obtained without templates. It is concluded that AlphaFold predictions obtained based on sequence information alone are usually accurate enough to solve the crystallographic phase problem with molecular replacement, and a general strategy for macromolecular structure determination that includes AI-based prediction both as a starting point and as a method of model optimization is suggested.Item Open Access Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds.(Proc Natl Acad Sci U S A, 2001-02-27) Luttrell, LM; Roudabush, FL; Choy, EW; Miller, WE; Field, ME; Pierce, KL; Lefkowitz, RJUsing both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.