Duke Student Scholarship
Permanent URI for this community
Browse
Browsing Duke Student Scholarship by Affiliation "Basic Science Departments"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Open Access A novel, non-apoptotic role for Scythe/BAT3: a functional switch between the pro- and anti-proliferative roles of p21 during the cell cycle.(2012) Yong, Sheila T.Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis, a form of programmed cell death, has been extensively studied. However, since the developmental defects observed in Bat3‐null mouse embryos cannot be explained solely by defects in apoptosis, I investigated whether BAT3 is also involved in regulating cell‐cycle progression. Using a stable‐inducible Bat3‐knockdown cellular system, I demonstrated that reduced BAT3 protein level causes a delay in both the G1/S transition and G2/M progression. Concurrent with these changes in cell‐cycle progression, I observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21. p21 is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Additionally, I observed that the p21 turnover rate was also reduced in Bat3‐knockdown cells released from G2/M synchronization. My findings indicate that in Bat3‐knockdown cells, p21 continues to be synthesized during cell‐cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent cell‐cycle delay. Finally, I showed that BAT3 co‐localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. My study reveals a novel, non‐apoptoticrole for BAT3 in cell‐cycle regulation. By maintaining low p21 protein level during G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 into S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation, an event that promotes G2/M progression. BAT3 modulates these pro‐ and anti‐proliferative roles of p21 at least in part by regulating the translocation of p21 between the cytoplasm and nucleus of the cells to ensure proper functioning and regulation of p21 in the appropriate intracellular compartments during different cell‐cycle phases.Item Open Access A PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer.(2011) Curtis, Valerie ForbesIn many cancer types, infiltration of bone marrow-derived myeloid cells in the tumor microenvironment is often associated with enhanced angiogenesis and tumor progression, resulting in poor prognosis. The polypeptide chemokine PK2 (Bv8) regulates myeloid cell mobilization from the bone marrow, leading to activation of angiogenesis as well as accumulation of macrophages and neutrophils in the tumor site. Neutralizing antibodies against PK2 display potent anti-tumor efficacy, illustrating the potential of PK2-antagonists as therapeutic agents for the treatment of cancer. However, antibody-based therapies can be too large to treat certain diseases and too expensive to manufacture while small molecule therapeutics are not prohibitive in these ways. In this study, we demonstrate the anti-tumor activity of a small molecule PK2 antagonist, PKRA7, in the contexts of glioblastoma and pancreatic cancer xenograft tumor models. In the highly vascularized glioblastoma, PKRA7 decreased blood vessel density while increasing necrotic areas in the tumor mass. Consistent with the anti-angiogenic activity of PKRA7 in vivo, this compound effectively reduced PK2-induced microvascular endothelial cell branching in vitro. For the poorly vascularized pancreatic cancer, the primary anti-tumor effect of PKRA7 is mediated by the blockage of myeloid cell migration and infiltration. At the molecular level, PKRA7 inhibits PK2-induced expression of several pro-migratory chemokines and chemokine receptors in macrophages. Combining PKRA7 treatment with standard chemotherapeutic agents resulted in enhanced effects in xenograft models for both glioblastoma and pancreatic tumors. Taken together, our results indicate that the anti-tumor activity of PKRA7 can be mediated by distinct mechanisms that are relevant to the pathological features of the specific type of cancer. This small molecule PK2 antagonist holds the promise to be further developed as an effective agent for combinational cancer therapy.Item Open Access An entirely cell-based system to generate single-chain antibodies against cell surface receptors.(2008) Chen, Yu-Hsun JasonThe generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen (Ag). Traditionally, the generation of single chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single chain Abs that does not require the use of purified protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high throughputs creening of arrayed phage clones, and characterization of recombinant single chain variable regions(scFvs). This strategy was used to generate a panel of single chain Abs specific for the innate immunity receptor Toll‐like receptor2 (TLR2). Once generated, individual scFvs were subcloned into an expression vector allowing the production of recombinant antibodies in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell‐based system efficiently generates Abs that bind native molecules displayed on cell surfaces, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination. However, an inconvenience of this strategy is that it requires construction of a new library for each target TLR. This problem might be solved by using non‐immune antibody libraries to obtain antibodies against multiple TLRs. Non‐immune libraries contain a wide variety of antibodies but these are often low affinity, while immune libraries, derived from immunized animals, containa high frequency of high affinity antibodies, but are typically limited to a single antigen. In addition, it can be difficult to produce non‐immune libraries with sufficient complexity to select Abs against multiple Ags. Because the re‐assortment of VH and VL regions that occurs during antibody library construction greatly increases library complexity, we hypothesized that an immune antibody library produced against one member of a protein family would contain antibodies specific for other members of the same protein family. Here, we tested this hypothesis by mining an existing anti‐hTLR2 antibody library for antibodies specific for other members of the TLR family. This procedure, which we refer to as homolog mining, proved to be effective. Using a cell‐based system to pan and screen our anti‐hTLR2 library, we identified single chain antibodies specific for three of the four hTLR2 homologs we targeted. The antibodies identified, anti‐murine TLR2, anti‐hTLR5, and anti‐hTLR6, bind specifically to their target, with no cross‐reactivity to hTLR2 or other TLRs tested. These results demonstrate that combinatorial re‐assortment of VH and VL fragments during Ab library construction increases Ab repertoire complexity, allowing antibody libraries produced by immunization with one antigen to be used to obtain antibodies specific to related antigens. The principle of homolog mining may be extended to other protein families and will facilitate and accelerate antibody production processes. In conclusion, we developed an entirely cell‐based method to generate antibodies that bind to native molecules on the cell surface, while eliminating the requirement of recombinant proteins and the risk of microbial component contamination. With homolog mining, this system is capable of generating antibodies not only against the original immunized Ag, but also against homologous Ags. In combination, this system proved to be an effective and efficient means for generating multiple antibodies that bind to multiple related Ags as they are displayed on cell surfaces.Item Open Access B-lymphocyte effector functions in health and disease.(2010) DiLillo, David JohnB cells and humoral immunity make up an important component of the immune system and play a vital role in preventing and fighting off infection by various pathogens. B cells also have been implicated in the pathogenesis of autoimmune disease. However, the various functions that B cells perform during the development and maintenance of autoimmune conditions remain unclear. Therefore, the overall goal of this dissertation was to determine what roles B cells play during autoimmune disease. In the Chapter 3 of this dissertation, the function of B cells was assessed during tumor immunity, a model of immune system activation and cellular immunity. To quantify B cell contributions to T cell-mediated anti-tumor immune responses, mature B cells were depleted from wild type adult mice using CD20 monoclonal antibody (mAb) prior to syngeneic B16 melanoma tumor transfers. Remarkably, subcutaneous (s.c.) tumor volume and lung metastasis were increased two-fold in B cell-depleted mice. Effector-memory and interferon (IFN)γ or tumor necrosis factor (TNF)α-secreting CD4+ and CD8+ T cell induction was significantly impaired in B cell-depleted mice with tumors. Tumor antigen (Ag)-specific CD8+ T cell proliferation was also impaired in tumor-bearing mice that lacked B cells. Thus, B cells were required for optimal T cell activation and cellular immunity in this in vivo non-lymphoid tumor model. In Chapter 4 of this dissertation, the roles that B cells play during immune responses elicited by different allografts were assessed, since allograft rejection is thought to be T cell-mediated. The effects of B cell-depletion on acute cardiac rejection, chronic renal rejection, and skin graft rejection were compared using CD20 or CD19 mAbs. Both CD20 and CD19 mAbs effectively depleted mature B cells, while CD19 mAb treatment depleted plasmablasts and some plasma cells. B cell depletion did not affect acute cardiac allograft rejection, although CD19 mAb treatment prevented allograft-specific IgG production. Nonetheless, CD19 mAb treatment significantly reduced renal allograft rejection and abrogated allograft-specific IgG development, while CD20 mAb treatment did not. By contrast, B cell depletion exacerbated skin allograft rejection and augmented the proliferation of adoptively transferred alloAg-specific CD4+ T cells, demonstrating that B cells can also negatively regulate allograft rejection. Thereby, B cells can either positively or negatively regulate allograft rejection depending on the nature of the allograft and the intensity of the rejection response. Serum antibody (Ab) is, at least in part, responsible for protection against pathogens and tissue destruction during autoimmunity. In Chapter 5 of this dissertation, the mechanisms responsible for the maintenance of long-lived serum Ab levels were examined, since the relationship between memory B cells, long-lived plasma cells, and long-lived humoral immunity remains controversial. To address the roles of B cell subsets in the longevity of humoral responses, mature B cells were depleted in mice using CD20 mAb. CD20+ B cell depletion prevented humoral immune responses and class switching, and depleted existing and adoptively-transferred B cell memory. Nonetheless, B cell depletion did not affect serum Ig levels, Ag-specific Ab titers, or bone marrow (BM) Ab-secreting plasma cell numbers. Co-blockade of LFA-1 and VLA-4 adhesion molecules temporarily depleted long-lived plasma cells from the BM. CD20+ B cell depletion plus LFA-1/VLA-4 mAb treatment significantly prolonged Ag-specific plasma cell depletion from the BM, with a significant decrease in Ag-specific serum IgG. Collectively, these results indicate that BM plasma cells are intrinsically long-lived. Further, these studies now demonstrate that mature and memory B cells are not required for maintaining BM plasma cell numbers, but are required for repopulation of plasma cell-deficient BM. Thereby, depleting mature and memory B cells does not have a dramatic negative effect on pre-existing Ab levels. Collectively, the studies described in this dissertation demonstrate that B cells function through multiple effector mechanisms to influence the course and intensity of normal and autoreactive immune responses: the promotion of cellular immune responses and CD4+ T cell activation, the negative regulation of cellular immune responses, and the production and maintenance of long-lived Ag-specific serum Ab titers. Therefore, each of these three B cell effector mechanisms can contribute independently or in concert with the other mechanisms to clear pathogens or cause tissue damage during autoimmunity.Item Open Access Distinct functions of POT1 at telomeres.(2008) Kendellen, Megan FullerTelomeres are nucleoprotein complexes that constitute the ends of eukaryotic chromosomes. Telomeres differentiate the end of the chromosome from sites of DNA damage and control cellular replicative potential. The loss of function of telomeres results in several biological consequences. First, dysfunctional telomeres elicit DNA damage responses and repair activities, which frequently induce cytogenetic abnormalities and genomic instability that are characteristic of human cancer. Second, cellular immortalization resulting from inappropriate elongation of telomeres is a critical component of tumorigenesis. Alternatively, as telomere shortening limits replicative potential, abnormally short telomeres can result in premature cellular senescence that is associated with human pathology ranging from anemia to atherosclerosis. Telomeric DNA is composed of tandem repeats of G‐rich double‐stranded (ds)DNA that terminates in a G‐rich 3’ single‐stranded (ss)DNA overhang. Telomeres are thought to assume a lariat structure termed the t‐loop, which is decorated by an assortment of telomere‐associated proteins. The most unique and least well characterized of these proteins is POT1. POT1 binds telomeric ssDNA via a pair of Nterminal OB‐folds. Through its C‐terminal protein‐interaction domain, POT1 directly binds the telomeric dsDNA‐binding protein TRF2 and participates in heterodimeric complex with the protein TPP1. Inhibition of POT1 induces a robust DNA damage response at telomeres and deregulation of telomere length homeostasis, indicating that POT1 is important in maintaining telomere stability and in regulating telomere length. The goal of my thesis work was to determine which of the three major functions of POT1– telomeric ssDNA‐, TPP1‐, or TRF2‐binding – were required to properly localize POT1 to telomeres and to prevent the telomere instability and length deregulation that occur in the absence of POT1. Using separation‐of‐function mutants of POT1 deficient in at least one of these activities, I found that POT1 depends on its heterodimeric partner TPP1 in cis with telomeric ssDNA‐binding to preserve telomere stability, while POT1 depends on its protein interaction with TRF2 to localize to telomeres and its TRF2‐ and telomeric ssDNA‐binding activities in cis to regulate telomere length.Item Open Access Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli.(2011) Bateman, Stacey LynnEscherichia coli is a typical constituent of the enteric tract in many animals, including humans. However, specialized extraintestinal pathogenic E. colistrains (ExPEC) may transition from benign occupation of the enteric and vaginal tracts to sterile sites such as the urinary tract, bloodstream, and central nervous system. ExPEC isolates of urinary tract origin express type 1 pili as a critical virulence determinant mediating adherence to and invasion into urinary tract tissues. Type 1 pili expression is under epigenetic regulation by a family of site-specific recombinases, including FimX, which is encoded from a genomic islet called PAI-X for Pathogenicity Islet of FimX. A goal of this study was to determine the prevalence of the type 1 pili epigenetic regulator genes (fimB, fimE, fimX, ipuA, ipuB) and associated PAI-X genes (hyxR, hyxA, hyxB) present among an extended, diverse collection of pathogenic and commensal E. coli isolates. Using a new multiplex PCR, fimX and the additional PAI-X genes were found to be highly associated with ExPEC (83.2%) and more prevalent in ExPEC of lower urinary tract origin (87.5%) than upper urinary tract origin (73.6%) or human commensal isolates (20.6%; p < 0.05, all comparisons). Fim-like recombinase genes ipuA and ipuB also had a significant association with ExPEC compared to commensal isolates, but had a low overall prevalence (23.8% vs. 11.1%; p < 0.05). PAI-X also showed a strong positive correlation with the presence of virulence genes in the genomes of pathogenic isolates. Combined, our molecular epidemiology studies indicate PAI-X is highly associated with ExPEC isolates, and its high prevalence suggests a potential role in the ExPEC lifestyle. Further investigation into the regulation of PAI-X factors showed that FimX is also an epigenetic regulator of a LuxR-like response regulator HyxR, encoded on PAI-X. In multiple clinical ExPEC isolates, FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the inversion sites of the type 1 pili promoter and independent of integration host factor IHF. Additional studies into the role of HyxR during ExPEC pathogenesis uncovered that HyxR is involved in regulation of the nitrosative stress response. In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNI), primarily through derepression of hmpA, encoding a nitric oxide detoxifying flavohemoglobin. However, in the macrophage, HyxR expression produced large effects on intracellular survival in the presence and absence of RNI, and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX. ExPEC reside in the enteric tract as commensal reservoirs, but can transition to a pathogenic state by invading normally sterile niches, establishing infection, and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. This study demonstrates the functional versatility of the FimX recombinase and identifies novel epigenetic and transcriptional regulatory controls for ExPEC tolerance to RNI challenge and survival during intracellular macrophage infection. Further investigation of these pathways may shed light on the regulatory cues and programming that provoke the commensal to pathogen transition.Item Open Access Functional evolution of mammalian odorant receptors.(2012) Adipietro, Kaylin AlexisThe ability to detect small volatile molecules in the environment is mediated by the large repertoire of odorant receptors (ORs) in each species. The mammalian OR repertoire is an attractive model to study evolution because ORs have been subjected to rapid gene gains and losses between species, presumably caused by changes of the olfactory system to adapt to the environment. Despite the complicated history, clear orthologs—genes related via speciation—can still be identified even in distantly related species. Functional assessment of ORs in related species remains largely untested and sequence similarity is often used as a proxy for functional data. Here I describe the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. Using a heterologous expression system, we functionally characterized the responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.Item Open Access Mechanisms of specificity in neuronal activity-regulated gene transcription.(2012) Lyons, Michelle RenéeIn the nervous system, activity-regulated gene transcription is one of the fundamental processes responsible for orchestrating proper brain development–a process that in humans takes over 20 years. Moreover, activity-dependent regulation of gene expression continues to be important for normal brain function throughout life; for example, some forms of synaptic plasticity important for learning and memory are known to rely on alterations in gene transcription elicited by sensory input. In the last two decades, increasingly comprehensive studies have described complex patterns of gene transcription induced and/or repressed following different kinds of stimuli that act in concert to effect changes in neuronal and synaptic physiology. A key theme to emerge from these studies is that of specificity, meaning that different kinds of stimuli up- and down regulate distinct sets of genes. The importance of such signaling specificity in synapse-to-nucleus communication becomes readily apparent in studies examining the physiological effects of the loss of one or more forms of transcriptional specificity – often, such genetic manipulations result in aberrant synapse formation, neuronal cell death, and/or cognitive impairment in mutant mice. The two primary loci at which mechanisms of signaling specificity typically act are 1) at the synapse – in the form of calcium channel number, localization, and subunit composition – and 2) in the nucleus – in the form of transcription factor expression, localization, and post-translational modification. My dissertation research has focused on the mechanisms of specificity that govern the activity-regulated transcription of the gene encoding Brain-derived Neurotrophic Factor(Bdnf). BDNF is a secreted protein that has numerous important functions in nervous system development and plasticity, including neuronal survival, neurite outgrowth, synapse formation, and long-term potentiation. Due to Bdnf’s complex transcriptional regulation by various forms of neural stimuli, it is well positioned to function as a transducer through which altered neural activity states can lead to changes in neuronal physiology and synaptic function. In this dissertation, I show that different families of transcription factors, and even different isoforms or splice variants within a single family, can specifically regulate Bdnf transcription in an age- and stimulus-dependent manner. Additionally, I characterize another mechanism of synapse-to-nucleus signaling specificity that is dependent upon NMDA-type glutamate receptor subunit composition, and provide evidence that the effect this signaling pathway has on gene transcription is important for normal GABAergic synapse formation. Taken together, my dissertation research sheds light on several novel signaling mechanisms that could lend specificity to the activity-dependent transcription of Bdnf exon IV. My data indicate that distinct neuronal stimuli can differentially regulate the Calcium-Response Element CaRE1 within Bdnf promoter IV through activation of two distinct transcription factors: Calcium-Response Factor (CaRF) and Myocyte Enhancer Factor 2 (MEF2). Furthermore, individual members of the MEF2 family of transcription factors differentially regulate the expression of Bdnf, and different MEF2C splice variants are unequally responsive to L-type voltage-gated calcium channel activation. Additionally, I show here for the first time that the NMDA-type glutamate receptor subunit NR3A (also known as GluN3A) is capable of exerting an effect on NMDA receptor-dependent Bdnf exon IV transcription, and that changes in the expression levels of NR3A may function to regulate the threshold for activation of synaptic plasticity-inducing transcriptional programs during brain development. Finally, I provide evidence that the transcription factor CaRF might function in the regulation of homeostatic programs of gene transcription in an age- and stimulus-specific manner. Together, these data describe multiple novel mechanisms of specificity in neuronal activity-regulated gene transcription, some of which function at the synapse, others of which function in the nucleus.Item Open Access Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation.(2010) Jin, CongIn recent years, the incidence of allergic asthma as well as the severity of disease has rapidly increased worldwide. Numerous epidemiological studies have related the exacerbation of allergic asthma with exposure to increased ambient particles from air pollutants. However, the mechanism by which particulate allergens (pAg) exacerbate allergic asthma remains undefined. To evaluate this, we modeled environmental pAg induced allergic asthma by exposing mice to polystyrene beads coated with natural allergen extracts. Compared to equal amounts of soluble allergen extracts (sAg), pAg triggered markedly enhanced airway hyper-responsiveness and pulmonary eosinophilia in allergen sensitized mice. The cellular basis for this effect was determined to be mast cells (MCs), as both airway allergic responses were attenuated in MC deficient KitWsh/KitW-sh mice compared to MC reconstituted KitW-sh/KitW-sh mice. The divergent responses of MCs to pAg versus sAg were due to differences in the termination rate of IgE/FcεRI initiated signaling. Following ligation of sAg, IgE/FcεRI rapidly shuttled into a degradative endosome/lysosome pathway. However, following ligation by pAg, IgE/FcεRI migrated into lipid raft enriched compartments and subsequently failed to follow a degradative pathway, which resulted in a prolonged signaling and heightened synthesis of proinflammatory mediators. These observations highlight the overlooked contributions of the particulate nature of allergens and mast cell endocytic circuitry to the aggravation of allergic asthma.Item Open Access Pharmacological targeting of the mitochondrial phosphatase PTPMT1.(2009) Doughty-Shenton, DahliaThe dual specificity protein tyrosine phosphatases comprise the largest and most diverse group of protein tyrosine phosphatases and play integral roles in the regulation of cell signaling events. The dual specificity protein tyrosine phosphatases impact multiple cellular processes including mitogenesis, differentiation, adhesion, migration, insulin secretion and programmed cell death. Thus, the dysregulation of these enzymes has been implicated in a myriad of human disease states. While the large volume of genetic data that has become available following genome sequencing efforts over the last decade has led to the rapid identification of many new dual specificity protein tyrosine phosphatases, the elucidation of the cellular function and substrates of these enzymes has been much slower. Hence, there is a need for new tools to study the dual specificity protein tyrosine phosphatases and the identification of inhibitors of these enzymes is regarded as an attractive prospect, potentially affording not only new means of studying these enzymes, but also possible therapeutics for the treatment of diseases caused by their dysregulation. However, the identification of potent, selective inhibitors of the dual specificity protein tyrosine phosphatases has proven somewhat difficult. PTPMT1, Protein Tyrosine Phosphatase Localized to the Mitochondrion 1 is a recently discovered, mitochondrion-localized, dual specificity phosphatase which has been implicated in the regulation of insulin secretion. However, the details of the mechanism by which PTPMT1 impacts insulin secretion, as well as its substrate in the pancreatic β-cell, have yet to be uncovered. Thus, the identification of a potent, selective inhibitor of the enzyme would aid in further study of PTPMT1. This work describes the identification of such an inhibitor of PTPMT1 following an in vitro screen of small molecule, chemical compounds using an artificial substrate. Following the screen, the lead compound emerged as a potent and potentially selective inhibitor of PTPMT1 both in vitro and in cells. Studies using this compound have shown that the compound induces increased secretion of insulin in a dose-dependent manner and thus support the notion that PTPMT1 may serve as a potential target for the treatment of Type II diabetes.Item Open Access Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity.(2008) Haskins, Kylie AnneThe first line of defense against pathogens is the phylogenetically ancient innate immune system. This system consists of physical barriers and conserved signaling pathways are activated upon infection to produce effector molecules that mount a microbicidal response. Recently, C. elegans has been established as a model organism for the study of innate immunity due to C. elegans genetic tractability and origins predating the evolution of adaptive immunity. Conserved defense pathways essential for mammalian innate immunity have been identified in C. elegans. However, most receptors critical for the activation of the defense signaling pathways in C. elegans remain unknown. The goal of this work was to study CED-1 and its potential role as a cell-surface signaling receptor essential for C. elegans immune response. In this study, we performed a full-genome microarray analysis and discovered that CED-1 functions to activate the expression of pqn/abu unfolded protein response (UPR) genes. The unfolded protein response has been implicated in the normal physiology of immune defense and in several disorders including diabetes, cancer, and neurodegenerative disease. Here we show that ced-1 and pqn/abu genes are required for the survival of C. elegans exposed to live S. enterica. We also show that the overexpression of pqn/abu genes confers protection to pathogen-mediated killing. Taken together, these results indicate that the apoptotic receptor CED-1 and a network of PQN/ABU proteins involved in a non-canonical UPR response are required for proper defense to pathogen infection in Caenorhabditis elegans.