Browsing by Author "Abbott, TMC"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances and Weak LensingAbbott, TMC; Aguena, M; Alarcon, A; Allam, S; Allen, S; Annis, J; Avila, S; Bacon, D; Bechtol, K; Bermeo, A; Bernstein, GM; Bertin, E; Bhargava, S; Bocquet, S; Brooks, D; Brout, D; Buckley-Geer, E; Burke, DL; Carnero Rosell, A; Carrasco Kind, M; Carretero, J; Castander, FJ; Cawthon, R; Chang, C; Chen, X; Choi, A; Costanzi, M; Crocce, M; da Costa, LN; Davis, TM; De Vicente, J; DeRose, J; Desai, S; Diehl, HT; Dietrich, JP; Dodelson, S; Doel, P; Drlica-Wagner, A; Eckert, K; Eifler, TF; Elvin-Poole, J; Estrada, J; Everett, S; Evrard, AE; Farahi, A; Ferrero, I; Flaugher, B; Fosalba, P; Frieman, J; García-Bellido, J; Gatti, M; Gaztanaga, E; Gerdes, DW; Giannantonio, T; Giles, P; Grandis, S; Gruen, D; Gruendl, RA; Gschwend, J; Gutierrez, G; Hartley, WG; Hinton, SR; Hollowood, DL; Honscheid, K; Hoyle, B; Huterer, D; James, DJ; Jarvis, M; Jeltema, T; Johnson, MWG; Johnson, MD; Kent, S; Krause, E; Kron, R; Kuehn, K; Kuropatkin, N; Lahav, O; Li, TS; Lidman, C; Lima, M; Lin, H; MacCrann, N; Maia, MAG; Mantz, A; Marshall, JL; Martini, P; Mayers, J; Melchior, P; Mena-Fernández, J; Menanteau, F; Miquel, R; Mohr, JJ; Nichol, RC; Nord, B; Ogando, RLC; Palmese, A; Paz-Chinchón, F; Plazas, AA; Prat, J; Rau, MM; Romer, AK; Roodman, A; Rooney, P; Rozo, E; Rykoff, ES; Sako, M; Samuroff, S; Sánchez, C; Sanchez, E; Saro, A; Scarpine, V; Schubnell, M; Scolnic, D; Serrano, S; Sevilla-Noarbe, I; Sheldon, E; Smith, J Allyn; Smith, M; Suchyta, E; Swanson, MEC; Tarle, G; Thomas, D; To, C; Troxel, MA; Tucker, DL; Varga, TN; von der Linden, A; Walker, AR; Wechsler, RH; Weller, J; Wilkinson, RD; Wu, H; Yanny, B; Zhang, Y; Zhang, Z; Zuntz, J; Collaboration, DESWe perform a joint analysis of the counts and weak lensing signal of redMaPPer clusters selected from the Dark Energy Survey (DES) Year 1 dataset. Our analysis uses the same shear and source photometric redshifts estimates as were used in the DES combined probes analysis. Our analysis results in surprisingly low values for $S_8 =\sigma_8(\Omega_{\rm m}/0.3)^{0.5}= 0.65\pm 0.04$, driven by a low matter density parameter, $\Omega_{\rm m}=0.179^{+0.031}_{-0.038}$, with $\sigma_8-\Omega_{\rm m}$ posteriors in $2.4\sigma$ tension with the DES Y1 3x2pt results, and in $5.6\sigma$ with the Planck CMB analysis. These results include the impact of post-unblinding changes to the analysis, which did not improve the level of consistency with other data sets compared to the results obtained at the unblinding. The fact that multiple cosmological probes (supernovae, baryon acoustic oscillations, cosmic shear, galaxy clustering and CMB anisotropies), and other galaxy cluster analyses all favor significantly higher matter densities suggests the presence of systematic errors in the data or an incomplete modeling of the relevant physics. Cross checks with X-ray and microwave data, as well as independent constraints on the observable--mass relation from SZ selected clusters, suggest that the discrepancy resides in our modeling of the weak lensing signal rather than the cluster abundance. Repeating our analysis using a higher richness threshold ($\lambda \ge 30$) significantly reduces the tension with other probes, and points to one or more richness-dependent effects not captured by our model.Item Open Access Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing(arXiv e-prints, 2021-05) Collaboration, DES; Abbott, TMC; Aguena, M; Alarcon, A; Allam, S; Alves, O; Amon, A; Andrade-Oliveira, F; Annis, J; Avila, S; Bacon, D; Baxter, E; Bechtol, K; Becker, MR; Bernstein, GM; Bhargava, S; Birrer, S; Blazek, J; Brandao-Souza, A; Bridle, SL; Brooks, D; Buckley-Geer, E; Burke, DL; Camacho, H; Campos, A; Carnero Rosell, A; Carrasco Kind, M; Carretero, J; Castander, FJ; Cawthon, R; Chang, C; Chen, A; Chen, R; Choi, A; Conselice, C; Cordero, J; Costanzi, M; Crocce, M; da Costa, LN; da Silva Pereira, ME; Davis, C; Davis, TM; De Vicente, J; DeRose, J; Desai, S; Di Valentino, E; Diehl, HT; Dietrich, JP; Dodelson, S; Doel, P; Doux, C; Drlica-Wagner, A; Eckert, K; Eifler, TF; Elsner, F; Elvin-Poole, J; Everett, S; Evrard, AE; Fang, X; Farahi, A; Fernandez, E; Ferrero, I; Ferté, A; Fosalba, P; Friedrich, O; Frieman, J; García-Bellido, J; Gatti, M; Gaztanaga, E; Gerdes, DW; Giannantonio, T; Giannini, G; Gruen, D; Gruendl, RA; Gschwend, J; Gutierrez, G; Harrison, I; Hartley, WG; Herner, K; Hinton, SR; Hollowood, DL; Honscheid, K; Hoyle, B; Huff, EM; Huterer, D; Jain, B; James, DJ; Jarvis, M; Jeffrey, N; Jeltema, T; Kovacs, A; Krause, E; Kron, R; Kuehn, K; Kuropatkin, N; Lahav, O; Leget, P-F; Lemos, P; Liddle, AR; Lidman, C; Lima, M; Lin, H; MacCrann, N; Maia, MAG; Marshall, JL; Martini, P; McCullough, J; Melchior, P; Mena-Fernández, J; Menanteau, F; Miquel, R; Mohr, JJ; Morgan, R; Muir, J; Myles, J; Nadathur, S; Navarro-Alsina, A; Nichol, RC; Ogando, RLC; Omori, Y; Palmese, A; Pandey, S; Park, Y; Paz-Chinchón, F; Petravick, D; Pieres, A; Plazas Malagón, AA; Porredon, A; Prat, J; Raveri, M; Rodriguez-Monroy, M; Rollins, RP; Romer, AK; Roodman, A; Rosenfeld, R; Ross, AJ; Rykoff, ES; Samuroff, S; Sánchez, C; Sanchez, E; Sanchez, J; Sanchez Cid, D; Scarpine, V; Schubnell, M; Scolnic, D; Secco, LF; Serrano, S; Sevilla-Noarbe, I; Sheldon, E; Shin, T; Smith, M; Soares-Santos, M; Suchyta, E; Swanson, MEC; Tabbutt, M; Tarle, G; Thomas, D; To, C; Troja, A; Troxel, MA; Tucker, DL; Tutusaus, I; Varga, TN; Walker, AR; Weaverdyck, N; Weller, J; Yanny, B; Yin, B; Zhang, Y; Zuntz, JWe present the first cosmology results from large-scale structure in the Dark Energy Survey (DES) spanning 5000 deg$^2$. We perform an analysis combining three two-point correlation functions (3$\times$2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions. The analysis was designed to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results. We model the data within the flat $\Lambda$CDM and $w$CDM cosmological models. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude $S_8=0.776^{+0.017}_{-0.017}$ and matter density $\Omega_{\mathrm{m}} = 0.339^{+0.032}_{-0.031}$ in $\Lambda$CDM, mean with 68% confidence limits; $S_8=0.775^{+0.026}_{-0.024}$, $\Omega_{\mathrm{m}} = 0.352^{+0.035}_{-0.041}$, and dark energy equation-of-state parameter $w=-0.98^{+0.32}_{-0.20}$ in $w$CDM. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed $p=0.13$ to $0.48$. When combining DES 3$\times$2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find $p=0.34$. Combining all of these data sets with Planck CMB lensing yields joint parameter constraints of $S_8 = 0.812^{+0.008}_{-0.008}$, $\Omega_{\mathrm{m}} = 0.306^{+0.004}_{-0.005}$, $h=0.680^{+0.004}_{-0.003}$, and $\sum m_{\nu}<0.13 \;\mathrm{eV\; (95\% \;CL)}$ in $\Lambda$CDM; $S_8 = 0.812^{+0.008}_{-0.008}$, $\Omega_{\mathrm{m}} = 0.302^{+0.006}_{-0.006}$, $h=0.687^{+0.006}_{-0.007}$, and $w=-1.031^{+0.030}_{-0.027}$ in $w$CDM. (abridged)Item Open Access First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: The Effect of Host Galaxy Properties on Supernova LuminositySmith, M; Sullivan, M; Wiseman, P; Kessler, R; Scolnic, D; Brout, D; D'Andrea, CB; Davis, TM; Foley, RJ; Frohmaier, C; Galbany, L; Gupta, RR; Gutiérrez, CP; Hinton, SR; Kelsey, L; Lidman, C; Macaulay, E; Möller, A; Nichol, RC; Nugent, P; Palmese, A; Pursiainen, M; Sako, M; Swann, E; Thomas, RC; Tucker, BE; Vincenzi, M; Carollo, D; Lewis, GF; Sommer, NE; Abbott, TMC; Aguena, M; Allam, S; Avila, S; Bertin, E; Bhargava, S; Brooks, D; Buckley-Geer, E; Burke, DL; Rosell, AC; Kind, MC; Costanzi, M; da Costa, LN; de Vicente, J; Desai, S; Diehl, HT; Doel, P; Eifler, TF; Everett, S; Flaugher, B; Fosalba, P; Frieman, J; García-Bellido, J; Gaztanaga, E; Glazebrook, K; Gruen, D; Gruendl, RA; Gschwend, J; Gutierrez, G; Hartley, WG; Hollowood, DL; Honscheid, K; James, DJ; Krause, E; Kuehn, K; Kuropatkin, N; Lima, M; MacCrann, N; Maia, MAG; Marshall, JL; Martini, P; Melchior, P; Menanteau, F; Miquel, R; Paz-Chinchón, F; Plazas, AA; Romer, AK; Roodman, A; Rykoff, ES; Sanchez, E; Scarpine, V; Schubnell, M; Serrano, S; Sevilla-Noarbe, I; Suchyta, E; Swanson, MEC; Tarle, G; Thomas, D; Tucker, DL; Varga, TN; Walker, ARWe present improved photometric measurements for the host galaxies of 206 spectroscopically confirmed type Ia supernovae discovered by the Dark Energy Survey Supernova Program (DES-SN) and used in the first DES-SN cosmological analysis. Fitting spectral energy distributions to the $griz$ photometric measurements of the DES-SN host galaxies, we derive stellar masses and star-formation rates. For the DES-SN sample, when considering a 5D ($z$, $x_1$, $c$, $\alpha$, $\beta$) bias correction, we find evidence of a Hubble residual `mass step', where SNe Ia in high mass galaxies ($>10^{10} \textrm{M}_{\odot}$) are intrinsically more luminous (after correction) than their low mass counterparts by $\gamma=0.040\pm0.019$mag. This value is larger by $0.031$mag than the value found in the first DES-SN cosmological analysis. This difference is due to a combination of updated photometric measurements and improved star formation histories and is not from host-galaxy misidentification. When using a 1D (redshift-only) bias correction the inferred mass step is larger, with $\gamma=0.066\pm0.020$mag. The 1D-5D $\gamma$ difference for DES-SN is $0.026\pm0.009$mag. We show that this difference is due to a strong correlation between host galaxy stellar mass and the $x_1$ component of the 5D distance-bias correction. To better understand this effect, we include an intrinsic correlation between light-curve width and stellar mass in simulated SN Ia samples. We show that a 5D fit recovers $\gamma$ with $-9$mmag bias compared to a $+2$mmag bias for a 1D fit. This difference can explain part of the discrepancy seen in the data. Improvements in modeling correlations between galaxy properties and SN is necessary to determine the implications for $\gamma$ and ensure unbiased precision estimates of the dark energy equation-of-state as we enter the era of LSST.Item Open Access Supernova Host Galaxies in the Dark Energy Survey: I. Deep Coadds, Photometry, and Stellar MassesWiseman, P; Smith, M; Childress, M; Kelsey, L; Möller, A; Gupta, RR; Swann, E; Angus, CR; Brout, D; Davis, TM; Foley, RJ; Frohmaier, C; Galbany, L; Gutiérrez, CP; Inserra, C; Kessler, R; Lewis, GF; Lidman, C; Macaulay, E; Nichol, RC; Pursiainen, M; Sako, M; Scolnic, D; Sommer, NE; Sullivan, M; Tucker, BE; Abbott, TMC; Aguena, M; Allam, S; Avila, S; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, DL; Rosell, AC; Carollo, D; Kind, MC; da Costa, LN; de Vicente, J; Desai, S; Diehl, HT; Doel, P; Eifler, TF; Everett, S; Fosalba, P; Frieman, J; García-Bellido, J; Gaztanaga, E; Gerdes, DW; Gill, MSS; Glazebrook, K; Gruendl, RA; Gschwend, J; Hartley, WG; Hinton, SR; Hollowood, DL; Honscheid, K; James, DJ; Kuehn, K; Kuropatkin, N; Lima, M; Maia, MAG; March, M; Martini, P; Melchior, P; Menanteau, F; Miquel, R; Ogando, RLC; Paz-Chinchón, F; Plazas, AA; Romer, AK; Roodman, A; Sanchez, E; Scarpine, V; Serrano, S; Suchyta, E; Swanson, MEC; Tarle, G; Thomas, D; Tucker, DL; Varga, TN; Walker, AR; Wilkinson, RDThe five-year Dark Energy Survey supernova programme (DES-SN) is one of the largest and deepest transient surveys to date in terms of volume and number of supernovae. Identifying and characterising the host galaxies of transients plays a key role in their classification, the study of their formation mechanisms, and the cosmological analyses. To derive accurate host galaxy properties, we create depth-optimised coadds using single-epoch DES-SN images that are selected based on sky and atmospheric conditions. For each of the five DES-SN seasons, a separate coadd is made from the other 4 seasons such that each SN has a corresponding deep coadd with no contaminating SN emission. The coadds reach limiting magnitudes of order $\sim 27$ in $g$-band, and have a much smaller magnitude uncertainty than the previous DES-SN host templates, particularly for faint objects. We present the resulting multi-band photometry of host galaxies for samples of spectroscopically confirmed type Ia (SNe Ia), core-collapse (CCSNe), and superluminous (SLSNe) as well as rapidly evolving transients (RETs) discovered by DES-SN. We derive host galaxy stellar masses and probabilistically compare stellar-mass distributions to samples from other surveys. We find that the DES spectroscopically confirmed sample of SNe Ia selects preferentially fewer high mass hosts at high redshift compared to other surveys, while at low redshift the distributions are consistent. DES CCSNe and SLSNe hosts are similar to other samples, while RET hosts are unlike the hosts of any other transients, although these differences have not been disentangled from selection effects.Item Open Access Supernova Siblings: Assessing the Consistency of Properties of Type Ia Supernovae that Share the Same Parent GalaxiesScolnic, D; Smith, M; Massiah, A; Wiseman, P; Brout, D; Kessler, R; Davis, TM; Foley, RJ; Galbany, L; Hinton, SR; Hounsell, R; Kelsey, L; Lidman, C; Macaulay, E; Morgan, R; Nichol, RC; Möller, A; Popovic, B; Sako, M; Sullivan, M; Thomas, BP; Tucker, BE; Abbott, TMC; Aguena, M; Allam, S; Annis, J; Avila, S; Bechtol, K; Bertin, E; Brooks, D; Burke, DL; Rosell, AC; Carollo, D; Kind, MC; Carretero, J; Costanzi, M; Da Costa, LN; De Vicente, J; Desai, S; Diehl, HT; Doel, P; Drlica-Wagner, A; Eckert, K; Eifler, TF; Everett, S; Flaugher, B; Fosalba, P; Frieman, J; Garciá-Bellido, J; Gaztanaga, E; Gerdes, DW; Glazebrook, K; Gruen, D; Gruendl, RA; Gschwend, J; Gutierrez, G; Hartley, WG; Hollowood, DL; Honscheid, K; James, DJ; Kuehn, K; Kuropatkin, N; Lewis, GF; Li, TS; Lima, M; Maia, MAG; Marshall, JL; Menanteau, F; Miquel, R; Palmese, A; Paz-Chinchón, F; Plazas, AA; Pursiainen, M; Sanchez, E; Scarpine, V; Schubnell, M; Serrano, S; Sevilla-Noarbe, I; Sommer, NE; Suchyta, E; Swanson, MEC; Tarle, G; Varga, TN; Walker, AR; Wilkinson, RWhile many studies have shown a correlation between properties of the light curves of Type Ia SN (SNe Ia) and properties of their host galaxies, it remains unclear what is driving these correlations. We introduce a new direct method to study these correlations by analyzing `parent' galaxies that host multiple SNe Ia 'siblings'. Here, we search the Dark Energy Survey SN sample, one of the largest samples of discovered SNe, and find 8 galaxies that hosted two likely Type Ia SNe. Comparing the light-curve properties of these SNe and recovered distances from the light curves, we find no better agreement between properties of SNe in the same galaxy as any random pair of galaxies, with the exception of the SN light-curve stretch. We show at $2.8\sigma$ significance that at least 1/2 of the intrinsic scatter of SNe Ia distance modulus residuals is not from common host properties. We also discuss the robustness with which we could make this evaluation with LSST, which will find $100\times$ more pairs of galaxies, and pave a new line of study on the consistency of Type Ia supernovae in the same parent galaxies. Finally, we argue that it is unlikely some of these SNe are actually single, lensed SN with multiple images.