Browsing by Author "Ahn, Seungkirl"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference.(Proc Natl Acad Sci U S A, 2003-02-18) Ahn, Seungkirl; Nelson, Christopher D; Garrison, Tiffany Runyan; Miller, William E; Lefkowitz, Robert JBeta-arrestins bind to activated G protein-coupled receptor kinase-phosphorylated receptors, which leads to their desensitization with respect to G proteins, internalization via clathrin-coated pits, and signaling via a growing list of "scaffolded" pathways. To facilitate the discovery of novel adaptor and signaling roles of beta-arrestins, we have developed and validated a generally applicable interfering RNA approach for selectively suppressing beta-arrestins 1 or 2 expression by up to 95%. Beta-arrestin depletion in HEK293 cells leads to enhanced cAMP generation in response to beta(2)-adrenergic receptor stimulation, markedly reduced beta(2)-adrenergic receptor and angiotensin II receptor internalization and impaired activation of the MAP kinases ERK 1 and 2 by angiotensin II. This approach should allow discovery of novel signaling and regulatory roles for the beta-arrestins in many seven-membrane-spanning receptor systems.Item Open Access Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2.(Proc Natl Acad Sci U S A, 2003-09-16) Wei, Huijun; Ahn, Seungkirl; Shenoy, Sudha K; Karnik, Sadashiva S; Hunyady, László; Luttrell, Louis M; Lefkowitz, Robert JStimulation of a mutant angiotensin type 1A receptor (DRY/AAY) with angiotensin II (Ang II) or of a wild-type receptor with an Ang II analog ([sarcosine1,Ile4,Ile8]Ang II) fails to activate classical heterotrimeric G protein signaling but does lead to recruitment of beta-arrestin 2-GFP and activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (maximum stimulation approximately 50% of wild type). This G protein-independent activation of mitogen-activated protein kinase is abolished by depletion of cellular beta-arrestin 2 but is unaffected by the PKC inhibitor Ro-31-8425. In parallel, stimulation of the wild-type angiotensin type 1A receptor with Ang II robustly stimulates ERK1/2 activation with approximately 60% of the response blocked by the PKC inhibitor (G protein dependent) and the rest of the response blocked by depletion of cellular beta-arrestin 2 by small interfering RNA (beta-arrestin dependent). These findings imply the existence of independent G protein- and beta-arrestin 2-mediated pathways leading to ERK1/2 activation and the existence of distinct "active" conformations of a seven-membrane-spanning receptor coupled to each.