Browsing by Author "Allen, Hugh D"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Open Access A 14-year-old in heart failure with multiple cardiomyopathy variants illustrates a role for signal-to-noise analysis in gene test re-interpretation.(Clinical case reports, 2019-01) Connell, Patrick S; Jeewa, Aamir; Kearney, Debra L; Tunuguntla, Hari; Denfield, Susan W; Allen, Hugh D; Landstrom, Andrew PVariants of unknown significance in cardiomyopathic disease should be analyzed systematically based on the prevalence of the variant in the population compared to prevalence of disease, evidence that other variants in the gene are pathologic, consistency of prediction software on pathogenicity, and the current clinical consensus.Item Open Access Amino Acid-Level Signal-to-Noise Analysis Aids in Pathogenicity Prediction of Incidentally Identified TTN-Encoded Titin Truncating Variants.(Circulation. Genomic and precision medicine, 2021-02) Connell, Patrick S; Berkman, Amy M; Souder, BriAnna M; Pirozzi, Elisa J; Lovin, Julia J; Rosenfeld, Jill A; Liu, Pengfei; Tunuguntla, Hari; Allen, Hugh D; Denfield, Susan W; Kim, Jeffrey J; Landstrom, Andrew PBackground
TTN, the largest gene in the human body, encodes TTN (titin), a protein that plays key structural, developmental, and regulatory roles in skeletal and cardiac muscle. Variants in TTN, particularly truncating variants (TTNtvs), have been implicated in the pathogenicity of cardiomyopathy. Despite this link, there is also a high burden of TTNtvs in the ostensibly healthy general population. This complicates the diagnostic interpretation of incidentally identified TTNtvs, which are of increasing abundance given expanding clinical exome sequencing.Methods
Incidentally identified TTNtvs were obtained from a large referral database of clinical exome sequencing (Baylor Genetics) and compared with rare population variants from genome aggregation database and cardiomyopathy-associated variants from cohort studies in the literature. A subset of TTNtv-positive children evaluated for cardiomyopathy at Texas Children's Hospital was retrospectively reviewed for clinical features of cardiomyopathy. Amino acid-level signal-to-noise analysis was performed.Results
Pathological hotspots were identified within the A-band and N-terminal I-band that closely correlated with regions of high percent-spliced in of exons. Incidental TTNtvs and population TTNtvs did not localize to these regions. Variants were reclassified based on current American College of Medical Genetics and Genomics criteria with incorporation of signal-to-noise analysis among Texas Children's Hospital cases. Those reclassified as likely pathogenic or pathogenic were more likely to have evidence of cardiomyopathy on echocardiography than those reclassified as variants of unknown significance.Conclusions
Incidentally found TTNtvs are common among clinical exome sequencing referrals. Pathological hotspots within the A-band of TTN may be informative in determining variant pathogenicity when incorporated into current American College of Medical Genetics and Genomics guidelines.Item Open Access Amino acid-level signal-to-noise analysis of incidentally identified variants in genes associated with long QT syndrome during pediatric whole exome sequencing reflects background genetic noise.(Heart rhythm, 2018-07) Landstrom, Andrew P; Fernandez, Ernesto; Rosenfeld, Jill A; Yang, Yaping; Dailey-Schwartz, Andrew L; Miyake, Christina Y; Allen, Hugh D; Penny, Daniel J; Kim, Jeffrey JBACKGROUND:Due to rapid expansion of clinical genetic testing, an increasing number of genetic variants of undetermined significance and unclear diagnostic value are being identified in children. Variants found in genes associated with heritable channelopathies, such as long QT syndrome (LQTS), are particularly difficult to interpret given the risk of sudden cardiac death associated with pathologic mutations. OBJECTIVE:The purpose of this study was to determine whether variants in LQTS-associated genes from whole exome sequencing (WES) represent disease-associated biomarkers or background genetic "noise." METHODS:WES variants from Baylor Genetics Laboratories were obtained for 17 LQTS-associated genes. Rare variants from healthy controls were obtained from the GnomAD database. LQTS case variants were extracted from the literature. Amino acid-level mapping and signal-to-noise calculations were conducted. Clinical history and diagnostic studies were analyzed for WES subjects evaluated at our institution. RESULTS:Variants in LQTS case-associated genes were present in 38.3% of 7244 WES probands. There was a similar frequency of variants in the WES and healthy cohorts for LQTS1-3 (11.2% and 12.9%, respectively) and LQTS4-17 (27.1% and 38.4%, respectively). WES variants preferentially localized to amino acids altered in control individuals compared to cases. Based on amino acid-level analysis, WES-identified variants are indistinguishable from healthy background variation, whereas LQTS1 and 2 case-identified variants localized to clear pathologic "hotspots." No individuals who underwent clinical evaluation had clinical suspicion for LQTS. CONCLUSION:The prevalence of incidentally identified LQTS-associated variants is ∼38% among WES tests. These variants most likely represent benign healthy background genetic variation rather than disease-associated mutations.Item Open Access Analysis of enriched rare variants in JPH2-encoded junctophilin-2 among Greater Middle Eastern individuals reveals a novel homozygous variant associated with neonatal dilated cardiomyopathy.(Scientific reports, 2019-06-21) Jones, Edward G; Mazaheri, Neda; Maroofian, Reza; Zamani, Mina; Seifi, Tahereh; Sedaghat, Alireza; Shariati, Gholamreza; Jamshidi, Yalda; Allen, Hugh D; Wehrens, Xander HT; Galehdari, Hamid; Landstrom, Andrew PJunctophilin-2 (JPH2) is a part of the junctional membrane complex that facilitates calcium-handling in the cardiomyocyte. Previously, missense variants in JPH2 have been linked to hypertrophic cardiomyopathy; however, pathogenic "loss of function" (LOF) variants have not been described. Family-based genetic analysis of GME individuals with cardiomyopathic disease identified an Iranian patient with dilated cardiomyopathy (DCM) as a carrier of a novel, homozygous single nucleotide insertion in JPH2 resulting in a stop codon (JPH2-p.E641*). A second Iranian family with consanguineous parents hosting an identical heterozygous variant had 2 children die in childhood from cardiac failure. To characterize ethnicity-dependent genetic variability in JPH2 and to identify homozygous JPH2 variants associated with cardiac disease, we identified variants in JPH2 in a worldwide control cohort (gnomAD) and 2 similar cohorts from the Greater Middle East (GME Variome, Iranome). These were compared against ethnicity-matched clinical whole exome sequencing (WES) referral tests and a case cohort of individuals with hypertrophic cardiomyopathy (HCM) based on comprehensive review of the literature. Worldwide, 1.45% of healthy individuals hosted a rare JPH2 variant with a significantly higher proportion among GME individuals (4.45%); LOF variants were rare overall (0.04%) yet were most prevalent in GME (0.21%). The increased prevalence of LOF variants in GME individuals was corroborated among region-specific, clinical WES cohorts. In conclusion, we report ethnic-specific differences in JPH2 rare variants, with GME individuals being at higher risk of hosting homozygous LOF variants. This conclusion is supported by the identification of a novel JPH2 LOF variant confirmed by segregation analysis resulting in autosomal recessive pediatric DCM due to presumptive JPH2 truncation.Item Open Access Copy Number Variants of Undetermined Significance Are Not Associated with Worse Clinical Outcomes in Hypoplastic Left Heart Syndrome.(The Journal of pediatrics, 2018-11) Dailey-Schwartz, Andrew L; Tadros, Hanna J; Azamian, Mahshid Sababi; Lalani, Seema R; Morris, Shaine A; Allen, Hugh D; Kim, Jeffrey J; Landstrom, Andrew POBJECTIVE:To determine the prevalence, spectrum, and prognostic significance of copy number variants of undetermined significance (cnVUS) seen on chromosomal microarray (CMA) in neonates with hypoplastic left heart syndrome (HLHS). STUDY DESIGN:Neonates with HLHS who presented to Texas Children's Hospital between June 2008 and December 2016 were identified. CMA results were abstracted and compared against copy number variations (CNVs) in ostensibly healthy individuals gathered from the literature. Findings were classified as normal, consistent with a known genetic disorder, or cnVUS. Survival was then compared using Kaplan-Meier analysis. Secondary outcomes included tracheostomy, feeding tube at discharge, cardiac arrest, and extracorporeal membrane oxygenation (ECMO). RESULTS:Our study cohort comprised 105 neonates with HLHS, including 70 (66.7%) with normal CMA results, 9 (8.6%) with findings consistent with a known genetic disorder, and 26 (24.7%) with a cnVUS. Six of the 26 (23.0%) neonates with a cnVUS had a variant that localized to a specific region of the genome seen in the healthy control population. One-year survival was 84.0% in patients with a cnVUS, 68.3% in those with normal CMA results, and 33.3% in those with a known genetic disorder (P = .003). There were no significant differences in secondary outcomes among the groups, although notably ECMO was used in 15.7% of patients with normal CMA and was not used in those with cnVUS and abnormal results (P = .038). CONCLUSIONS:Among children with HLHS, cnVUSs detected on CMA are common. The cnVUSs do not localize to specific regions of the genome, and are not associated with worse outcomes compared with normal CMA results.Item Open Access Efficacy of RyR2 inhibitor EL20 in induced pluripotent stem cell-derived cardiomyocytes from a patient with catecholaminergic polymorphic ventricular tachycardia.(Journal of cellular and molecular medicine, 2021-06-10) Word, Tarah A; Quick, Ann P; Miyake, Christina Y; Shak, Mayra K; Pan, Xiaolu; Kim, Jean J; Allen, Hugh D; Sibrian-Vazquez, Martha; Strongin, Robert M; Landstrom, Andrew P; Wehrens, Xander HTCatecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac arrhythmia syndrome that often leads to sudden cardiac death. The most common form of CPVT is caused by autosomal-dominant variants in the cardiac ryanodine receptor type-2 (RYR2) gene. Mutations in RYR2 promote calcium (Ca2+ ) leak from the sarcoplasmic reticulum (SR), triggering lethal arrhythmias. Recently, it was demonstrated that tetracaine derivative EL20 specifically inhibits mutant RyR2, normalizes Ca2+ handling and suppresses arrhythmias in a CPVT mouse model. The objective of this study was to determine whether EL20 normalizes SR Ca2+ handling and arrhythmic events in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a CPVT patient. Blood samples from a child carrying RyR2 variant RyR2 variant Arg-176-Glu (R176Q) and a mutation-negative relative were reprogrammed into iPSCs using a Sendai virus system. iPSC-CMs were derived using the StemdiffTM kit. Confocal Ca2+ imaging was used to quantify RyR2 activity in the absence and presence of EL20. iPSC-CMs harbouring the R176Q variant demonstrated spontaneous SR Ca2+ release events, whereas administration of EL20 diminished these abnormal events at low nanomolar concentrations (IC50 = 82 nM). Importantly, treatment with EL20 did not have any adverse effects on systolic Ca2+ handling in control iPSC-CMs. Our results show for the first time that tetracaine derivative EL20 normalized SR Ca2+ handling and suppresses arrhythmogenic activity in iPSC-CMs derived from a CPVT patient. Hence, this study confirms that this RyR2-inhibitor represents a promising therapeutic candidate for treatment of CPVT.Item Open Access Incidentally identified genetic variants in arrhythmogenic right ventricular cardiomyopathy-associated genes among children undergoing exome sequencing reflect healthy population variation.(Molecular Genetics & Genomic Medicine, 2019-06) Headrick, Andrew T; Rosenfeld, Jill A; Yang, Yaping; Tunuguntla, Hari; Allen, Hugh D; Penny, Daniel J; Kim, Jeffrey J; Landstrom, Andrew PBACKGROUND:With expanding use of clinical whole exome sequencing (WES), genetic variants of uncertain significance are increasingly identified. As pathologic mutations in genes associated with arrhythmogenic right ventricular cardiomyopathy (ARVC) carry a risk of sudden death, determining the diagnostic relevance of incidentally identified variants associated with these genes is critical. METHODS:WES variants from a large, predominantly pediatric cohort (N = 7,066 probands) were obtained for nine ARVC-associated genes (Baylor Miraca). For comparison, a control cohort was derived from the gnomAD database and an ARVC case cohort (N = 1,379 probands) was established from ARVC cases in the literature. Topologic mapping was performed and signal-to-noise analysis was conducted normalizing WES, or case variants, against control variant frequencies. Retrospective chart review was performed of WES cases evaluated clinically (Texas Children's Hospital). RESULTS:Incidentally identified variants occurred in 14% of WES referrals and localized to genes which were rare among ARVC cases yet similar to controls. Amino acid-level signal-to-noise analysis of cases demonstrated "pathologic hotspots" localizing to critical domains of PKP2 and DSG2 while WES variants did not. PKP2 ARM7 and ARM8 domains and DSG2 N-terminal cadherin-repeat domains demonstrated high pathogenicity while normalized WES variant frequency was low. Review of clinical data available on WES referrals demonstrated none with evidence of ARVC among variant-positive individuals. CONCLUSIONS:Incidentally identified variants are common among pediatric WES testing with gene frequencies similar to "background" variants. Incidentally identified variants are unlikely to be pathologic.Item Open Access Meta-analysis of cardiomyopathy-associated variants in troponin genes identifies loci and intragenic hot spots that are associated with worse clinical outcomes.(Journal of molecular and cellular cardiology, 2020-05) Tadros, Hanna J; Life, Chelsea S; Garcia, Gustavo; Pirozzi, Elisa; Jones, Edward G; Datta, Susmita; Parvatiyar, Michelle S; Chase, P Bryant; Allen, Hugh D; Kim, Jeffrey J; Pinto, Jose R; Landstrom, Andrew PINTRODUCTION:Troponin (TNN)-encoded cardiac troponins (Tn) are critical for sensing calcium and triggering myofilament contraction. TNN variants are associated with development of cardiomyopathy; however, recent advances in genetic analysis have identified rare population variants. It is unclear how certain variants are associated with disease while others are tolerated. OBJECTIVE:To compare probands with TNNT2, TNNI3, and TNNC1 variants and utilize high-resolution variant comparison mapping of pathologic and rare population variants to identify loci associated with disease pathogenesis. METHODS:Cardiomyopathy-associated TNN variants were identified in the literature and topology mapping conducted. Clinical features were compiled and compared. Rare population variants were obtained from the gnomAD database. Signal-to-noise (S:N) normalized pathologic variant frequency against population variant frequency. Abstract review of clinical phenotypes was applied to "significant" hot spots. RESULTS:Probands were compiled (N = 70 studies, 224 probands) as were rare variants (N = 125,748 exomes; 15,708 genomes, MAF <0.001). TNNC1-positive probands demonstrated the youngest age of presentation (20.0 years; P = .016 vs TNNT2; P = .004 vs TNNI3) and the highest death, transplant, or ventricular fibrillation events (P = .093 vs TNNT2; P = .024 vs TNNI3; Kaplan Meir: P = .025). S:N analysis yielded hot spots of diagnostic significance within the tropomyosin-binding domains, α-helix 1, and the N-Terminus in TNNT2 with increased sudden cardiac death and ventricular fibrillation (P = .004). The inhibitory region and C-terminal region in TNNI3 exhibited increased restrictive cardiomyopathy (P =.008). HCM and RCM models tended to have increased calcium sensitivity and DCM decreased sensitivity (P < .001). DCM and HCM studies typically showed no differences in Hill coefficient which was decreased in RCM models (P < .001). CM models typically demonstrated no changes to Fmax (P = .239). CONCLUSION:TNNC1-positive probands had younger ages of diagnosis and poorer clinical outcomes. Mapping of TNN variants identified locations in TNNT2 and TNNI3 associated with heightened pathogenicity, RCM diagnosis, and increased risk of sudden death.Item Open Access TBX5-encoded T-box transcription factor 5 variant T223M is associated with long QT syndrome and pediatric sudden cardiac death.(American journal of medical genetics. Part A, 2021-03) Markunas, Alexandra M; Manivannan, Perathu KR; Ezekian, Jordan E; Agarwal, Agnim; Eisner, William; Alsina, Katherina; Allen, Hugh D; Wray, Gregory A; Kim, Jeffrey J; Wehrens, Xander HT; Landstrom, Andrew PLong QT syndrome (LQTS) is a genetic disease resulting in a prolonged QT interval on a resting electrocardiogram, predisposing affected individuals to polymorphic ventricular tachycardia and sudden death. Although a number of genes have been implicated in this disease, nearly one in four individuals exhibiting the LQTS phenotype are genotype-negative. Whole-exome sequencing identified a missense T223M variant in TBX5 that cosegregates with prolonged QT interval in a family with otherwise genotype-negative LQTS and sudden death. The TBX5-T223M variant was absent among large ostensibly healthy populations (gnomAD) and predicted to be pathogenic by in silico modeling based on Panther, PolyPhen-2, Provean, SIFT, SNAP2, and PredictSNP prediction tools. The variant was located in a highly conserved region of TBX5 predicted to be part of the DNA-binding interface. A luciferase assay identified a 57.5% reduction in the ability of TBX5-T223M to drive expression at the atrial natriuretic factor promotor compared to wildtype TBX5 in vitro. We conclude that the variant is pathogenic in this family, and we put TBX5 forward as a disease susceptibility allele for genotype-negative LQTS. The identification of this familial variant may serve as a basis for the identification of previously unknown mechanisms of LQTS with broader implications for cardiac electrophysiology.Item Open Access Variant R94C in TNNT2-Encoded Troponin T Predisposes to Pediatric Restrictive Cardiomyopathy and Sudden Death Through Impaired Thin Filament Relaxation Resulting in Myocardial Diastolic Dysfunction.(Journal of the American Heart Association, 2020-03) Ezekian, Jordan E; Clippinger, Sarah R; Garcia, Jaquelin M; Yang, Qixin; Denfield, Susan; Jeewa, Aamir; Dreyer, William J; Zou, Wenxin; Fan, Yuxin; Allen, Hugh D; Kim, Jeffrey J; Greenberg, Michael J; Landstrom, Andrew PBackground Pediatric-onset restrictive cardiomyopathy (RCM) is associated with high mortality, but underlying mechanisms of disease are under investigated. RCM-associated diastolic dysfunction secondary to variants in TNNT2-encoded cardiac troponin T (TNNT2) is poorly described. Methods and Results Genetic analysis of a proband and kindred with RCM identified TNNT2-R94C, which cosegregated in a family with 2 generations of RCM, ventricular arrhythmias, and sudden death. TNNT2-R94C was absent among large, population-based cohorts Genome Aggregation Database (gnomAD) and predicted to be pathologic by in silico modeling. Biophysical experiments using recombinant human TNNT2-R94C demonstrated impaired cardiac regulation at the molecular level attributed to reduced calcium-dependent blocking of myosin's interaction with the thin filament. Computational modeling predicted a shift in the force-calcium curve for the R94C mutant toward submaximal calcium activation compared within the wild type, suggesting low levels of muscle activation even at resting calcium concentrations and hypercontractility following activation by calcium. Conclusions The pathogenic TNNT2-R94C variant activates thin-filament-mediated sarcomeric contraction at submaximal calcium concentrations, likely resulting in increased muscle tension during diastole and hypercontractility during systole. This describes the proximal biophysical mechanism for development of RCM in this family.