Browsing by Author "Allphin, Alex J"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.(Tomography (Ann Arbor, Mich.), 2023-07) Nadkarni, Rohan; Clark, Darin P; Allphin, Alex J; Badea, Cristian TPhoton-counting CT (PCCT) is powerful for spectral imaging and material decomposition but produces noisy weighted filtered backprojection (wFBP) reconstructions. Although iterative reconstruction effectively denoises these images, it requires extensive computation time. To overcome this limitation, we propose a deep learning (DL) model, UnetU, which quickly estimates iterative reconstruction from wFBP. Utilizing a 2D U-net convolutional neural network (CNN) with a custom loss function and transformation of wFBP, UnetU promotes accurate material decomposition across various photon-counting detector (PCD) energy threshold settings. UnetU outperformed multi-energy non-local means (ME NLM) and a conventional denoising CNN called UnetwFBP in terms of root mean square error (RMSE) in test set reconstructions and their respective matrix inversion material decompositions. Qualitative results in reconstruction and material decomposition domains revealed that UnetU is the best approximation of iterative reconstruction. In reconstructions with varying undersampling factors from a high dose ex vivo scan, UnetU consistently gave higher structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) to the fully sampled iterative reconstruction than ME NLM and UnetwFBP. This research demonstrates UnetU's potential as a fast (i.e., 15 times faster than iterative reconstruction) and generalizable approach for PCCT denoising, holding promise for advancing preclinical PCCT research.Item Open Access High-resolution hybrid micro-CT imaging pipeline for mouse brain region segmentation and volumetric morphometry.(PloS one, 2024-01) Nadkarni, Rohan; Han, Zay Yar; Anderson, Robert J; Allphin, Alex J; Clark, Darin P; Badea, Alexandra; Badea, Cristian TBackground
Brain region segmentation and morphometry in humanized apolipoprotein E (APOE) mouse models with a human NOS2 background (HN) contribute to Alzheimer's disease (AD) research by demonstrating how various risk factors affect the brain. Photon-counting detector (PCD) micro-CT provides faster scan times than MRI, with superior contrast and spatial resolution to energy-integrating detector (EID) micro-CT. This paper presents a pipeline for mouse brain imaging, segmentation, and morphometry from PCD micro-CT.Methods
We used brains of 26 mice from 3 genotypes (APOE22HN, APOE33HN, APOE44HN). The pipeline included PCD and EID micro-CT scanning, hybrid (PCD and EID) iterative reconstruction, and brain region segmentation using the Small Animal Multivariate Brain Analysis (SAMBA) tool. We applied SAMBA to transfer brain region labels from our new PCD CT atlas to individual PCD brains via diffeomorphic registration. Region-based and voxel-based analyses were used for comparisons by genotype and sex.Results
Together, PCD and EID scanning take ~5 hours to produce images with a voxel size of 22 μm, which is faster than MRI protocols for mouse brain morphometry with voxel size above 40 μm. Hybrid iterative reconstruction generates PCD images with minimal artifacts and higher spatial resolution and contrast than EID images. Our PCD atlas is qualitatively and quantitatively similar to the prior MRI atlas and successfully transfers labels to PCD brains in SAMBA. Male and female mice had significant volume differences in 26 regions, including parts of the entorhinal cortex and cingulate cortex. APOE22HN brains were larger than APOE44HN brains in clusters from the hippocampus, a region where atrophy is associated with AD.Conclusions
This work establishes a pipeline for mouse brain analysis using PCD CT, from staining to imaging and labeling brain images. Our results validate the effectiveness of the approach, setting a foundation for research on AD mouse models while reducing scanning durations.Item Open Access Photon Counting CT and Radiomic Analysis Enables Differentiation of Tumors Based on Lymphocyte Burden(Tomography) Allphin, Alex J; Mowery, Yvonne M; Lafata, Kyle J; Clark, Darin P; Bassil, Alex M; Castillo, Rico; Odhiambo, Diana; Holbrook, Matthew D; Ghaghada, Ketan B; Badea, Cristian TThe purpose of this study was to investigate if radiomic analysis based on spectral micro-CT with nanoparticle contrast-enhancement can differentiate tumors based on lymphocyte burden. High mutational load transplant soft tissue sarcomas were initiated in Rag2+/− and Rag2−/− mice to model varying lymphocyte burden. Mice received radiation therapy (20 Gy) to the tumor-bearing hind limb and were injected with a liposomal iodinated contrast agent. Five days later, animals underwent conventional micro-CT imaging using an energy integrating detector (EID) and spectral micro-CT imaging using a photon-counting detector (PCD). Tumor volumes and iodine uptakes were measured. The radiomic features (RF) were grouped into feature-spaces corresponding to EID, PCD, and spectral decomposition images. The RFs were ranked to reduce redundancy and increase relevance based on TL burden. A stratified repeated cross validation strategy was used to assess separation using a logistic regression classifier. Tumor iodine concentration was the only significantly different conventional tumor metric between Rag2+/− (TLs present) and Rag2−/− (TL-deficient) tumors. The RFs further enabled differentiation between Rag2+/− and Rag2−/− tumors. The PCD-derived RFs provided the highest accuracy (0.68) followed by decomposition-derived RFs (0.60) and the EID-derived RFs (0.58). Such non-invasive approaches could aid in tumor stratification for cancer therapy studies.