Browsing by Author "Alzheimer's Disease Neuroimaging Initiative"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A prognostic model of Alzheimer's disease relying on multiple longitudinal measures and time-to-event data.(Alzheimer's & dementia : the journal of the Alzheimer's Association, 2018-05) Li, Kan; O'Brien, Richard; Lutz, Michael; Luo, Sheng; Alzheimer's Disease Neuroimaging InitiativeINTRODUCTION:Characterizing progression in Alzheimer's disease is critically important for early detection and targeted treatment. The objective was to develop a prognostic model, based on multivariate longitudinal markers, for predicting progression-free survival in patients with mild cognitive impairment. METHODS:The information contained in multiple longitudinal markers was extracted using multivariate functional principal components analysis and used as predictors in the Cox regression models. Cross-validation was used for selecting the best model based on Alzheimer's Disease Neuroimaging Initiative-1. External validation was conducted on Alzheimer's Disease Neuroimaging Initiative-2. RESULTS:Model comparison yielded a prognostic index computed as the weighted combination of historical information of five neurocognitive longitudinal markers that are routinely collected in observational studies. The comprehensive validity analysis provided solid evidence of the usefulness of the model for predicting Alzheimer's disease progression. DISCUSSION:The prognostic model was improved by incorporating multiple longitudinal markers. It is useful for monitoring disease and identifying patients for clinical trial recruitment.Item Open Access Bayesian inference and dynamic prediction of multivariate joint model with functional data: An application to Alzheimer's disease.(Statistics in medicine, 2021-10-14) Zou, Haotian; Li, Kan; Zeng, Donglin; Luo, Sheng; Alzheimer's Disease Neuroimaging InitiativeAlzheimer's disease (AD) is a severe neurodegenerative disorder impairing multiple domains, for example, cognition and behavior. Assessing the risk of AD progression and initiating timely interventions at early stages are critical to improve the quality of life for AD patients. Due to the heterogeneous nature and complex mechanisms of AD, one single longitudinal outcome is insufficient to assess AD severity and disease progression. Therefore, AD studies collect multiple longitudinal outcomes, including cognitive and behavioral measurements, as well as structural brain images such as magnetic resonance imaging (MRI). How to utilize the multivariate longitudinal outcomes and MRI data to make efficient statistical inference and prediction is an open question. In this article, we propose a multivariate joint model with functional data (MJM-FD) framework that relates multiple correlated longitudinal outcomes to a survival outcome, and use the scalar-on-function regression method to include voxel-based whole-brain MRI data as functional predictors in both longitudinal and survival models. We adopt a Bayesian paradigm to make statistical inference and develop a dynamic prediction framework to predict an individual's future longitudinal outcomes and risk of a survival event. We validate the MJM-FD framework through extensive simulation studies and apply it to the motivating Alzheimer's Disease Neuroimaging Initiative (ADNI) study.Item Open Access Multivariate functional mixed model with MRI data: An application to Alzheimer's disease.(Statistics in medicine, 2023-02) Zou, Haotian; Xiao, Luo; Zeng, Donglin; Luo, Sheng; Alzheimer's Disease Neuroimaging InitiativeAlzheimer's Disease (AD) is the leading cause of dementia and impairment in various domains. Recent AD studies, (ie, Alzheimer's Disease Neuroimaging Initiative (ADNI) study), collect multimodal data, including longitudinal neurological assessments and magnetic resonance imaging (MRI) data, to better study the disease progression. Adopting early interventions is essential to slow AD progression for subjects with mild cognitive impairment (MCI). It is of particular interest to develop an AD predictive model that leverages multimodal data and provides accurate personalized predictions. In this article, we propose a multivariate functional mixed model with MRI data (MFMM-MRI) that simultaneously models longitudinal neurological assessments, baseline MRI data, and the survival outcome (ie, dementia onset) for subjects with MCI at baseline. Two functional forms (the random-effects model and instantaneous model) linking the longitudinal and survival process are investigated. We use Markov Chain Monte Carlo (MCMC) method based on No-U-Turn Sampling (NUTS) algorithm to obtain posterior samples. We develop a dynamic prediction framework that provides accurate personalized predictions of longitudinal trajectories and survival probability. We apply MFMM-MRI to the ADNI study and identify significant associations among longitudinal outcomes, MRI data, and the risk of dementia onset. The instantaneous model with voxels from the whole brain has the best prediction performance among all candidate models. The simulation study supports the validity of the estimation and dynamic prediction method.