Browsing by Author "Ames, CP"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item Open Access 166 Predictive Modeling of Length of Hospital Stay Following Adult Spinal Deformity Correction: Analysis of 653 Patients With an Accuracy of 75% Within 2 Days(Neurosurgery, 2016-08-01) Scheer, JK; Ailon, TT; Smith, JS; Hart, R; Burton, DC; Bess, S; Neuman, BJ; Passias, PG; Miller, E; Shaffrey, CI; Schwab, F; Lafage, V; Klineberg, E; Ames, CPINTRODUCTION: The length of stay (LOS) following adult spinal deformity (ASD) surgery is a critical time period allowing for recovery to levels safe enough to return home or to rehabilitation. Thus, the goal is to minimize it for conserving hospital resources and third-party payer pressure. Factors related to LOS have not been studied nor has a predictive model been created. The goal of this study was to construct a preadmission predictive model based on patients' baseline variables and modifiable surgical parameters.Item Open Access A comparative cohort study of surgical approaches for adult spinal deformity at a minimum 2-year follow-up(European Spine Journal, 2024-01-01) Kazarian, GS; Feuchtbaum, E; Bao, H; Soroceanu, A; Kelly, MP; Kebaish, KM; Shaffrey, CI; Burton, DC; Ames, CP; Mundis, GM; Bess, S; Klineberg, EO; Swamy, G; Schwab, FJ; Kim, HJStudy design: This study was a retrospective multi-center comparative cohort study. Materials and methods: A retrospective institutional database of operative adult spinal deformity patients was utilized. All fusions > 5 vertebral levels and including the sacrum/pelvis were eligible for inclusion. Revisions, 3 column osteotomies, and patients with < 2-year clinical follow-up were excluded. Patients were separated into 3 groups based on surgical approach: 1) posterior spinal fusion without interbody (PSF), 2) PSF with interbody (PSF-IB), and 3) anteroposterior (AP) fusion (anterior lumbar interbody fusion or lateral lumbar interbody fusion with posterior screw fixation). Intraoperative, radiographic, and clinical outcomes, as well as complications, were compared between groups with ANOVA and χ2 tests. Results: One-hundred and thirty-eight patients were included for study (PSF, n = 37; PSF-IB, n = 44; AP, n = 57). Intraoperatively, estimated blood loss was similar between groups (p = 0.171). However, the AP group had longer operative times (547.5 min) compared to PSF (385.1) and PSF-IB (370.7) (p < 0.001). Additionally, fusion length was shorter in PSF-IB (11.4) compared to AP (13.6) and PSF (12.9) (p = 0.004). There were no differences between the groups in terms of change in alignment from preoperative to 2 years postoperative. There were no differences in clinical outcomes. While postoperative complications were largely similar between groups, operative complications were higher in the AP group (31.6%) compared to the PSF (5.4%) and PSF-IB (9.1) groups (p < 0.001). Conclusion: While there were differences in intraoperative outcomes (operative time and fusion length), there were no differences in postoperative clinical or radiographic outcomes. AP fusion was associated with a higher rate of operative complications.Item Open Access Adult Spinal Deformity Surgeons Are Unable to Accurately Predict Postoperative Spinal Alignment Using Clinical Judgment Alone(Spine Deformity, 2016-07-01) Ailon, T; Scheer, JK; Lafage, V; Schwab, FJ; Klineberg, E; Sciubba, DM; Protopsaltis, TS; Zebala, L; Hostin, R; Obeid, I; Koski, T; Kelly, MP; Bess, S; Shaffrey, CI; Smith, JS; Ames, CPObject Adult spinal deformity (ASD) surgery seeks to reduce disability and improve quality of life through restoration of spinal alignment. In particular, correction of sagittal malalignment is correlated with patient outcome. Inadequate correction of sagittal deformity is not infrequent. The present study assessed surgeons' ability to accurately predict postoperative alignment. Methods Seventeen cases were presented with preoperative radiographic measurements, and a summary of the operation as performed by the treating physician. Surgeon training, practice characteristics, and use of surgical planning software was assessed. Participants predicted if the surgical plan would lead to adequate deformity correction and attempted to predict postoperative radiographic parameters including sagittal vertical axis (SVA), pelvic tilt (PT), pelvic incidence to lumbar lordosis mismatch (PI-LL), thoracic kyphosis (TK). Results Seventeen surgeons participated: 71% within 0 to 10 years of practice; 88% devote >25% of their practice to deformity surgery. Surgeons accurately judged adequacy of the surgical plan to achieve correction to specific thresholds of SVA 69% ± 8%, PT 68% ± 9%, and PI-LL 68% ± 11% of the time. However, surgeons correctly predicted the actual postoperative radiographic parameters only 42% ± 6% of the time. They were more successful at predicting PT (61% ± 10%) than SVA (45% ± 8%), PI-LL (26% ± 11%), or TK change (35% ± 21%; p <.05). Improved performance correlated with greater focus on deformity but not number of years in practice or number of three-column osteotomies performed per year. Conclusion Surgeons failed to correctly predict the adequacy of the proposed surgical plan in approximately one third of presented cases. They were better at determining whether a surgical plan would achieve adequate correction than predicting specific postoperative alignment parameters. Pelvic tilt and SVA were predicted with the greatest accuracy.Item Open Access Longitudinal Assessment of Modern Spine Surgery Training: 10-Year Follow-up of a Nationwide Survey of Residency and Spine Fellowship Program Directors(JBJS Open Access, 2023-08-01) Daniels, AH; Alsoof, D; McDonald, CL; Zhang, AS; Diebo, BG; Eberson, CP; Kuris, EO; Lavelle, W; Ames, CP; Shaffrey, CI; Hart, RABackground:Spine surgeons complete training through residency in orthopaedic surgery (ORTH) or neurosurgery (NSGY). A survey was conducted in 2013 to evaluate spine surgery training. Over the past decade, advances in surgical techniques and the changing dynamics in fellowship training may have affected training and program director (PD) perceptions may have shifted.Methods:This study is a cross-sectional survey distributed to all PDs of ORTH and NSGY residencies and spine fellowships in the United States. Participants were queried regarding characteristics of their program, ideal characteristics of residency training, and opinions regarding the current training environment. χ2tests were used to compare answers over the years.Results:In total, 241 PDs completed the survey. From 2013 to 2023, NSGY increased the proportion of residents with >300 spine cases (86%-100%) while ORTH remained with >90% of residents with < 225 cases (p < 0.05). A greater number of NSGY PDs encouraged spine fellowship even for community spine surgery practice (0% in 2013 vs. 14% in 2023, p < 0.05), which continued to be significantly different from ORTH PDs (∼88% agreed, p > 0.05). 100% of NSGY PDs remained confident in their residents performing spine surgery, whereas ORTH confidence significantly decreased from 43% in 2013 to 25% in 2023 (p < 0.05). For spinal deformity, orthopaedic PDs (92%), NSGY PDs (96%), and fellowship directors (95%), all agreed that a spine fellowship should be pursued (p = 0.99). In both 2013 and 2023, approximately 44% were satisfied with the spine training model in the United States. In 2013, 24% of all PDs believed we should have a dedicated spine residency, which increased to 39% in 2023 (fellowship: 57%, ORTH: 38%, NSGY: 21%) (p < 0.05).Conclusion:Spine surgery training continues to evolve, yet ORTH and neurological surgery training remains significantly different in case volumes and educational strengths. In both 2013 and 2023, less than 50% of PDs were satisfied with the current spine surgery training model, and a growing minority believe that spine surgery should have its own residency training pathway.Level of Evidence:IV.Item Open Access Lowest Instrumented Vertebra Selection to S1 or Ilium Versus L4 or L5 in Adult Spinal Deformity: Factors for Consideration in 349 Patients With a Mean 46-Month Follow-Up(Global Spine Journal, 2023-05-01) Yao, YC; Kim, HJ; Bannwarth, M; Smith, J; Bess, S; Klineberg, E; Ames, CP; Shaffrey, CI; Burton, D; Gupta, M; Mundis, GM; Hostin, R; Schwab, F; Lafage, VStudy Design: Retrospective cohort study. Objective: To compare the outcomes of patients with adult spinal deformity (ASD) following spinal fusion with the lowest instrumented vertebra (LIV) at L4/L5 versus S1/ilium. Methods: A multicenter ASD database was evaluated. Patients were categorized into 2 groups based on LIV levels—groups L (fusion to L4/L5) and S (fusion to S1/ilium). Both groups were propensity matched by age and preoperative radiographic alignments. Patient demographics, operative details, radiographic parameters, revision rates, and health-related quality of life (HRQOL) scores were compared. Results: Overall, 349 patients had complete data, with a mean follow-up of 46 months. Patients in group S (n = 311) were older and had larger sagittal and coronal plane deformities than those in group L (n = 38). After matching, 28 patients were allocated to each group with similar demographic, radiographic, and clinical parameters. Sagittal alignment restoration at postoperative week 6 was significantly better in group S than in group L, but it was similar in both groups at the 2-year follow-up. Fusion to S1/ilium involved a longer operating time, higher PJK rates, and greater PJK angles than that to L4/L5. There were no significant differences in the complication and revision rates between the groups. Both groups showed significant improvements in HRQOL scores. Conclusions: Fusion to S1/ilium had better sagittal alignment restoration at postoperative week 6 and involved higher PJK rates and greater PJK angles than that to L4/L5. The clinical outcomes and rates of revision surgery and complications were similar between the groups.Item Open Access Preoperative dysphonia and dysphagia improve following cervical deformity surgery(Spine Journal, 2024-09-01) Soroceanu, A; Gum, JL; Protopsaltis, TS; Hamilton, DK; Passias, PG; Lafage, R; Smith, JS; Kebaish, KM; Eastlack, RK; Klineberg, EO; Gupta, MC; Lafage, V; Schwab, FJ; Shaffrey, CI; Bess, S; Burton, DC; Ames, CPBACKGROUND CONTEXT: Twenty-five percent of adult cervical deformity patients undergoing deformity correction have impairment due to a voice problem prior to surgery. Prior work has shown that these patients tend to be more frail and more likely to report preoperative dysphagia. We hypothesized that these patients could be at increased risk of post operative dysphonia and dysphagia. PURPOSE: The purpose of this study was to quantify how patients with preoperative dysphonia differ from their counterparts in terms postoperative dysphagia, dysphonia and HRQOL 6 weeks post surgery. STUDY DESIGN/SETTING: Retrospective analysis of a prospective multicenter cervical deformity database. PATIENT SAMPLE: Adult cervical deformity patients with preop dysphonia undergoing deformity correction. OUTCOME MEASURES: Voice handicap index-10 (VHI-10). METHODS: Retrospective analysis of a prospective multicenter cervical deformity database. The voice handicap index-10 (VHI-10) was used to assess patient's perception of impairment due to problems with their voice prior to surgery. A score ≥11 was considered indicative of dysphonia. Patients were divided into two groups: normalVHI group (VHI-10 score <11) and highVHI group (VHI score ≥11). The two groups were compared in terms of baseline demographics, alignment, surgical metrics, and 6-week dysphagia (measured on the EAT-10 questionnaire), and post operative outcomes. T-tests and chi2 tests were performed, as appropriate. The significance level was p<0.05. RESULTS: There were 74 ACD patients included: NormalVHI (n=58, average VHI score 2.77) and HighVHI (n=16, average VHI score 16.37). The groups were similar in terms of baseline demographics and preoperative alignment. There was no statistically significant difference in terms of surgical metrics between the two groups (revision surgery p=0.21, anterior approach p=0.92, use of osteotomies p=0.71, and OR time p=0.15). The two groups had a similar rate of in hospital adverse events (12.2% vs 7.7%, p=0.64), and similar improvements on the NDI, mJOA, and NRS neck and arm pain. HighVHI patients showed significant improvement on the VHI score 6 weeks post-surgery (11.18 vs 16.37, p=0.01). The HighVHI group also showed postoperative improvement on the EAT-10 questionnaire, compared to NormalVHI patients (-3.68 vs 4.03, p=0.003). CONCLUSIONS: Twenty-five percent of adult cervical deformity patients undergoing deformity correction have impairment due to a voice problem prior to surgery. Contrary to our initial hypothesis, these patients exhibited improvement in dysphonia and dysphagia scores 6 weeks post surgery, with 81% reporting improvement in symptoms of dysphonia, and 69% reporting improvement in symptoms of oropharyngeal dysphagia. FDA Device/Drug Status: This abstract does not discuss or include any applicable devices or drugs.Item Open Access Quantifying the importance of upper cervical extension reserve in adult cervical deformity surgery and its impact on baseline presentation and outcomes(Spine Journal, 2024-09-01) Passias, PG; Mir, J; Smith, JS; Lafage, V; Lafage, R; Diebo, BG; Daniels, AH; Onafowokan, O; Line, B; Eastlack, RK; Mundis, GM; Kebaish, KM; Soroceanu, A; Scheer, JK; Kelly, MP; Protopsaltis, TS; Kim, HJ; Hostin, RA; Gupta, MC; Riew, KD; Burton, DC; Schwab, FJ; Bess, S; Shaffrey, CI; Ames, CPBACKGROUND CONTEXT: Hyperextension of the upper cervical spine is a prominent compensatory mechanism to maintain horizontal gaze and balance in adult cervical deformity (ACD) patients, akin to pelvic tilt in spinal deformity. The relaxation of ER and its impact on postoperative outcomes is not well understood. PURPOSE: To evaluate upper cervical ER impact on postoperative disability and outcomes. STUDY DESIGN/SETTING: Retrospective cohort study. PATIENT SAMPLE: Adult cervical deformity. OUTCOME MEASURES: ER, HRQLs. METHODS: ACD patients undergoing subaxial cervical fusion with 2Y data were included. Upper cervical extension reserve (ER) was defined as: C0-C2 sagittal Cobb angle between neutral and extension. Relaxation of ER was defined as the ER normative mean in those that met the ideal in all Passias ACD modifiers. Outcomes were defined as "good" if meeting ≥2 of the three: (1) NDI <20 or meeting MCID, (2) mild myelopathy (mJOA≥14), and (3) NRS-Neck ≤5 or improved by ≥2 points from baseline. Controlled analysis was conducted with ANCOVA and multivariable logistic regressions. Conditional inference tree (CIT) analysis determined thresholds. RESULTS: A total of 108 ACD patients met inclusion. (Age 61.4 ± 12.3, 61% F, BMI 29.4 ± 7.5 kg/m2, mCD-FI .24 ±.12, CCI 0.97 ± 1.30). Radiographic alignment is depicted in Table 1. Preoperative C0-C2 ER was 8.7 ±9.0 ±, and at the last follow-up was 10.3 ± 11.1. ER in those meeting all ideal CD modifiers at 2Y was 12.9 ± 9.0. Preoperatively 29% had adequate ER, while 59.7% had improvement in ER postoperatively, with 50% of patients achieving adequate ER at 2Y. Higher ER significantly correlated with lower cervical deformity (p<.05). Preoperatively, greater ER was predictive of lower preoperative disability, with worse baseline mobility, pain, and anxiety (EQ5D) (B = -6.1, -2.9, -2.9 respectively; R2 =0.212, p<.001). Improvement of ER depicted a higher rate of MCID for NDI (64% vs 39%, p=.008), and meeting good clinical outcomes (72% vs 54%, p=.04). Controlling for baseline deformity and demographic factors found resolution of inadequate ER to have 7x higher likelihood of meeting MCID for NDI (6.941 [1.378-34.961], p=.019) and 4x higher odds of achieving good outcomes (4.022 [1.017-15.900], p=.047). Isolating those with inadequate preoperative ER, found postoperative resolution having 5x odds of good outcomes (p<.05). In those with inadequate ER at baseline, the preoperative C2-C7 of <-18 and TS-CL of >59 for TS-CL was predictive of ER resolution (p<.05). In those with preoperative C2-C7 >-18, a T1PA of >13 was predictive of postoperative return of ER (p<.05). Independently TS-CL of >59, was significant for predicting ER return postoperatively, highlighting its compensatory role for proximal spinal deformities (all p<.05). Surgical correction of C2-C7 by >16 from baseline was found to be predictive of ER return. CONCLUSIONS: Increased preoperative utilization of the extension reserve in the upper cervical spine in cervical deformity was associated with worse baseline regional and global alignment while impacting health-related measures. The majority of patients had relaxation of extension reserve postoperatively, however, in those who didn't, there was a decreased likelihood of achieving good outcomes. FDA Device/Drug Status: This abstract does not discuss or include any applicable devices or drugs.Item Open Access Radiographic outcomes of adult spinal deformity correction: A critical analysis of variability and failures across deformity patterns(Spine Deformity, 2014-01-01) Moal, B; Schwab, F; Ames, CP; Smith, JS; Ryan, D; Mummaneni, PV; Mundis, GM; Terran, JS; Klineberg, E; Hart, RA; Boachie-Adjei, O; Shaffrey, CI; Skalli, W; Lafage, VStudy Design Multicenter, prospective, consecutive, surgical case series from the International Spine Study Group. Objectives To evaluate the effectiveness of surgical treatment in restoring spinopelvic (SP) alignment. Summary of Background Data Pain and disability in the setting of adult spinal deformity have been correlated with global coronal alignment (GCA), sagittal vertical axis (SVA), pelvic incidence/lumbar lordosis mismatch (PI-LL), and pelvic tilt (PT). One of the main goals of surgery for adult spinal deformity is to correct these parameters to restore harmonious SP alignment. Methods Inclusion criteria were operative patients (age greater than 18 years) with baseline (BL) and 1-year full-length X-rays. Thoracic and thoracolumbar Cobb angle and previous mentioned parameters were calculated. Each parameter at BL and 1 year was categorized as either pathological or normal. Pathologic limits were: Cobb greater than 30°, GCA greater than 40 mm, SVA greater than 40 mm, PI-LL greater than 10°, and PT greater than 20°. According to thresholds, corrected or worsened alignment groups of patients were identified and overall radiographic effectiveness of procedure was evaluated by combining the results from the coronal and sagittal planes. Results A total of 161 patients (age, 55 ± 15 years) were included. At BL, 80% of patients had a Cobb angle greater than 30°, 25% had a GCA greater than 40 mm, and 42% to 58% had a pathological sagittal parameter of PI-LL, SVA, and/or PT. Sagittal deformity was corrected in about 50% of cases for patients with pathological SVA or PI-LL, whereas PT was most commonly worsened (24%) and least often corrected (24%). Only 23% of patients experienced complete radiographic correction of the deformity. Conclusions The frequency of inadequate SP correction was high. Pelvic tilt was the parameter least likely to be well corrected. The high rate of SP alignment failure emphasizes the need for better preoperative planning and intraoperative imaging. © 2014 Scoliosis Research Society.Item Open Access Rapid response during spinal deformity surgery can successfully save spinal cord function using intraoperative monitoring.(Spine Journal, 2024-09-01) Theologis, AA; Gupta, MC; Swamy, G; Yoshida, G; Kelly, MP; Strantzas, S; Basu, S; Kwan, K; Smith, JS; Pellise, F; Kato, S; Sardar, Z; Ames, CP; Jones, KE; Charalampidis, A; Rocos, B; Lenke, LG; Lewis, SJThis abstract contains content that is significantly similar to the authors' previously published abstract in the Global Spine Journal Rapid Fire. For access to the original publication, please visit the following DOI: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086046/pdf/10.1177_21925682241239518.pdf.Item Open Access Redefining Clinically Significant Blood Loss in Complex Adult Spine Deformity Surgery(Spine, 2024-01-01) Daher, M; Xu, A; Singh, M; Lafage, R; Line, BG; Lenke, LG; Ames, CP; Burton, DC; Lewis, SM; Eastlack, RK; Gupta, MC; Mundis, GM; Gum, JL; Hamilton, KD; Hostin, R; Lafage, V; Passias, PG; Protopsaltis, TS; Kebaish, KM; Schwab, FJ; Shaffrey, CI; Smith, JS; Bess, S; Klineberg, EO; Diebo, BG; Daniels, AHStudy Design. Retrospective analysis of prospectively-collected data Objective. This study aims to define clinically relevant blood loss in adult spinal deformity (ASD) surgery. Background. Current definitions of excessive blood loss following spine surgery are highly variable and may be suboptimal in predicting adverse events (AE). Methods. Adults undergoing complex ASD surgery were included. Estimated blood loss (EBL) was extracted for investigation, and estimated blood volume loss (EBVL) was calculated by dividing EBL by the preoperative blood volume utilizing Nadler's formula. LASSO regression was performed to identify five variables from demographic and peri-operative parameters. Logistic regression was subsequently performed to generate a receiver operating characteristics (ROC) curve and estimate an optimal threshold for EBL and EBVL. Finally, the proportion of patients with AE plotted against EBL and EBVL to confirm the identified thresholds. Results. In total 552 patients were included with a mean age of 60.7±15.1 years, 68% females, mean CCI was 1.0±1.6, and 22% experienced AEs. LASSO regression identified ASA score, baseline hypertension, preoperative albumin, and use of intra-operative crystalloids as the top predictors of an AE, in addition to EBL/EBVL. Logistic regression resulted in ROC curve which was used to identify a cut-off of 2.3 liters of EBL and 42% for EBVL. Patients exceeding these thresholds had AE rates of 36% (odds-ratio: 2.1, 95% CI [1.2-3.6]) and 31% (odds-ratio: 1.7, 95% CI [1.1-2.8]), compared to 21% for those below the thresholds of EBL and EBVL, respectively. Conclusion. In complex ASD surgery, intraoperative EBL of 2.3 liters and an EBVL of 42% are associated with clinically-significant AEs. These thresholds may be useful in guiding preoperative-patient-counseling, healthcare system quality initiatives, and clinical perioperative bloodloss management strategies in patients undergoing complex spine surgery. Additionally, similar methodology could be performed in other specialties to establish procedure-specific clinically-relevant bloodloss thresholds.Item Open Access Severe hip and knee osteoarthritis worsens patient-reported disability in adult spinal deformity patients(Spine Journal, 2024-09-01) Balmaceno-Criss, M; Singh, M; Xu, A; Daher, M; Lafage, R; Lewis, SJ; Klineberg, EO; Eastlack, RK; Gupta, MC; Mundis, GM; Gum, JL; Hamilton, DK; Hostin, RA; Passias, PG; Protopsaltis, TS; Kebaish, KM; Kim, HJ; Shaffrey, CI; Smith, JS; Line, B; Lenke, LG; Ames, CP; Burton, DC; Bess, S; Schwab, FJ; Lafage, V; Diebo, BG; Daniels, AHBACKGROUND CONTEXT: The complex interplay between lower extremity osteoarthritis and sagittal alignment in adult spinal deformity patients is of growing clinical interest. PURPOSE: To quantify the sequential effects of lower extremity OA on PROMs in ASD patients. STUDY DESIGN/SETTING: Retrospective review of prospectively collected data. PATIENT SAMPLE: ASD patients with no prior history of thoracolumbar surgery, and available baseline PROMs and standing radiographs were included. OUTCOME MEASURES: Baseline demographics, spinopelvic alignment, and PROMs. METHODS: Included patients with PROMs, standing xrays, no prior thoracolumbar surgery, and bilateral Kellgren-Lawrence (KL) hip/knee grade at baseline. Patients grouped into Spine (KL <3 BL hips & knees), Spine-Hip (KL>3 BL hips, KL <3 BL knees), Spine-Knee (KL>3 BL knees, KL>3 BL hips), Spine-Hip-Knee (KL>3 BL hips & knees). Baseline demographics, spinopelvic alignment, and PROMs were compared. Multivariate regression with forward stepwise selection predicted PROMs with variables (demographic, radiographic, OA severity) with significant association identified on Pearson correlation RESULTS: Included 160 patients: 56 Spine, 32 Spine-Knee, 20 Spine-Hip, and 52 Spine-Hip-Knee. Spine-Hip-Knee patients were older (Spine=62.2, Spine-Knee=61.2, Spine-Hip=59.1, Spine-Hip-Knee=68.5; p<.001) but similar in sex, comorbidities, and frailty; p>.05. Spine-Hip-Knee patients had higher SVA (50.0,30.6,60.5,83.5), T1PA (25.2,20.4,20.3,27.8), GSA (3.7,2.3,4.3,7.5), and KA (0.0,2.1,2.9,10.5); p<.005. SRS total and VR12 PCS scores were similar but VR12-2b climbing stairs (1.73,1.91,1.55,1.40, p=.014) and SRS-8 back pain at rest (2.29,2.84,1.95,2.71, p=.012) were lower in Spine-Hip-Knee and Spine-Hip, respectively. ODI (42.75,35.88,50.30,44.59, p=.040) and ODI Pain (2.88,1.84,2.90,2.46, p=0.019) were higher in Spine-Hip patients; ODI lifting was higher in hip OA patients but not significant (2.95,2.69,3.45,3.35, p>.05). In multivariate analyses, KOA changed the prediction of ODI pain from R2 0.052 to 0.086 and SRS-8 from R2 0.077 to 0.147. HOA changed the prediction of VR12-2b from R2 0.113 to 0.140 and ODI Lifting from R2 0.175 to 0.202. Frailty impacted PROMs across all models (p<.001) and GSA changed ODI, ODI pain, and VR12-2b models (p<.05). CONCLUSIONS: Severe hip and knee OA worsen patient-reported disability and physical function in ASD patients. These results quantify the impact of lower limb arthritis on patient reported outcomes, and highlight the need for integrated assessment and management of both spinal alignment and joint health in patients. FDA Device/Drug Status: This abstract does not discuss or include any applicable devices or drugs.Item Open Access Spine surgery training: Is it time to consider categorical spine surgery residency?(Spine Journal, 2015-07-01) Daniels, AH; Ames, CP; Garfin, SR; Shaffrey, CI; Riew, KD; Smith, JS; Anderson, PA; Hart, RAItem Open Access Three-dimensional evaluation of the dynamic interplay between pelvic anatomy, lower-limb compensation, and standing alignment in ASD(Spine Journal, 2024-09-01) Assi, A; Khalifé, M; Prince, G; Boutros, M; Karam, M; Ames, CP; Bess, S; Daniels, AH; Gupta, MC; Hostin, RA; Kelly, MP; Kim, HJ; Klineberg, EO; Lenke, LG; Nunley, PD; Passias, PG; Schwab, FJ; Shaffrey, CI; Smith, JS; Lafage, R; Diebo, BG; Lafage, VBACKGROUND CONTEXT: Previous studies have shown that lower limbs play a crucial role in compensating for sagittal spinal malalignment. However, these studies primarily focused on lower limb parameters in the sagittal plane, mainly knee flexion, leaving compensatory mechanisms that might happen in the coronal or axial planes unexplored. PURPOSE: This study aimed to investigate factors associated with lower-limb recruitment in adult spinal deformity (ASD) patients. STUDY DESIGN/SETTING: Retrospective study of prospectively collected data. PATIENT SAMPLE: ASD patients who underwent full-body biplanar X-rays and 3D reconstruction of lower limbs and pelvis. OUTCOME MEASURES: Association between morphological parameters and compensatory mechanisms METHODS: The study included ASD patients with moderate to severe sagittal plane deformities. Classic 2D parameters included pelvic shift (PSh), knee flexion (KA), sacro-femoral (SFA), and ankle dorsiflexion (AA) angles for the lower limbs, as well as TPA, PT, PI, and PI-LL mismatch. 3D reconstructions were used to assess acetabular parameters (abduction, coverage, and anteversion), pelvic depth (PD: distance between the pubic symphysis and the sacral endplate), and knee varus/valgus angle. After univariate analysis, multiple linear regressions were performed to investigate associations between spinal deformity and lower limb 2D/3D parameters with and without accounting for spinal alignment. RESULTS: A total of 146 subjects (67±10 years) were included with a mean PI-LL of 25.1±16.1°, TPA 37.4±10.6°, PT 27±9.1°, and PD of 85.9±16.2mm. Lower limbs compensation consisted of a PSh 38.4±43.7mm, KA 6.9±7.9°, and AA of 5.8±4.1°. Pelvic depth significantly correlated with PI (r=0.6, p<0.001), PT (r=0.3, p<0.001), and SFA (r=0.2, p=0.02). In multivariate analysis considering the full-body parameters, ankle dorsiflexion (AA) was associated with PT, PSh, and KA (all p<0.001) but not with spinal alignment and correlated with increased knee varus angulation (p=0.01). Similarly, KA correlated with PT, SFA, and AA (all p<0.001) but not with spinal alignment. Those associations remained significant in multivariate analysis considering only the lower-limbs parameters. In addition, patients with high pelvic depth (>100mm) had greater pelvic shift and PT than low ones (<70mm): 29.4+49.1mm versus 54.8±41.7mm and 23.7±9.3° versus 32.4±9.4°. Finally, increased PT was associated with higher PI (p<0.001) and more vertical acetabular abduction (57.4±3.9° for PT<15°, vs 60.7±4.2° for PT > 25°, p=0.009). CONCLUSIONS: There was 3D analysis of the lower extremities that revealed significant multiplanar interplay in the setting of spinal deformity. Pelvic morphology including antero-posterior depth is associated with greater compensatory abilities such as pelvic translation and retroversion. Greater PT compensation in the sagittal plane is associated with a more vertical acetabulum in the coronal plane. Knee and ankle flexion were indirectly correlated with spinal alignment as they contributed to higher PT and pelvic shift. Consequently, their assessment is valuable for understanding how patients compensate for malalignment but should not be a primary consideration in the correction strategy. The sagittal and coronal alignment of lower limbs cannot be separated, as an increase in ankle and knee flexion angles is associated with greater genu varum. FDA Device/Drug Status: This abstract does not discuss or include any applicable devices or drugs.Item Open Access Who are super-utilizers in adult spine deformity surgery and how can surgeons identify them preoperatively?(Spine Journal, 2024-09-01) Nayak, P; Hostin, RA; Staub, BN; Gum, JL; Line, B; Bess, S; Lenke, LG; Lafage, R; Smith, JS; Mullin, JP; Kelly, MP; Diebo, BG; Buell, TJ; Scheer, JK; Lafage, V; Klineberg, EO; Kim, HJ; Passias, PG; Kebaish, KM; Eastlack, RK; Daniels, AH; Soroceanu, A; Mundis, GM; Protopsaltis, TS; Hamilton, DK; Gupta, MC; Schwab, FJ; Shaffrey, CI; Ames, CP; Burton, DCBACKGROUND CONTEXT: A relatively small percentage of patients are responsible for a disproportional amount of resource utilization in adult ASD surgery and contribute to significantly elevating the average cost across the surgically treated patients. These patients are called super-utilizers (SU). Modest reduction in the frequency of these super-utilization episodes has the potential to significantly improve the value of ASD surgery. PURPOSE: The goal of this study was to determine which, if any, baseline patient, radiographic, and/or surgical factors are the most important drivers of this disproportional increased resource utilization. We hypothesize that baseline patient factors predicts super-utilizers (SU) in adult spinal deformity surgery (ASD) more than surgical or deformity factors. STUDY DESIGN/SETTING: Retrospective Review of a prospective, multicenter registry. PATIENT SAMPLE: A total of 1299 index operative ASD patients eligible for 2-yr follow-up. OUTCOME MEASURES: Predictors of SU vs Non-SU in ASD. METHODS: A prospective multicenter consecutive series of ASD patients was reviewed. Inclusion criteria was diagnosis of ASD (scoliosis≥20°, C7-SVA≥5cm, PT≥25°, or TK≥60°), >4 level posterior fusion, and minimum 2-year follow-up. Index and total episode of care (EOC) cost in 2022 dollars were calculated using average itemized direct costs obtained from the administrative hospital records for all events in the inpatient EOC. Patients with total 2-year EOC cost greater than 90th percentile were considered SU. Multivariate generalized linear models were used to identify the most significant predictors of SU. RESULTS: A total of 1299 patients were eligible for 2-yr follow-up with mean age 60.0+14.1 years, 76% female, and 93% caucasians. SU patients are marginally older (+2.6 yrs; p=0.03), depressed (34.2% vs 25.8%; p=0.03) and tend to have higher propensity for fraility (p=0.003), comorbidities (0.01), reoperation rates (54.8% vs 17.0%; p<0.001), and LOS (+3 days; p<0.0001) compared to non-SU. While degree of sagittal deformity (Schwab sagittal modifiers, all p>0.05) and proportion of 3-column osteotomies (p>0.05) were similar between the groups, SU patients have higher surgical invasiveness score (+28; p<0.001), more vertebrae fused (+3; p<0.0001); more interbody fusions (80% vs 55%; p<0.0001), more BMP use (87.3% vs 69.4%; p=0.0002); longer OR time (+91 mins; p<0.0001), increased blood loss (+700 mL; p<0.0001), and longer length of stay (+3 days; p<0.0001). Index and EOC cost were 49% (p<0.0001) and 62% (p<0.0001) higher respectively in SU. While cost/QALY was 3-times higher in SU compared to non-SU. Multivariate analysis identified Schwab modifier SVA, surgical invasiveness, OR time, blood loss, BMP use, and LOS as strong predictors of SU (all p<0.01). CONCLUSIONS: Surgical invasiveness score greater than 118, being in OR for more than 7.6 hrs, blood loss more than 700 ml, utilizing BMP, and LOS more than 11 days were strong predictors of being a SU. Patients with SVA grade of + and ++ were less likely to be a SU compared to SVA grade 0. Procedural and resource utilization factors were strong predictors of being a SU compared to patient factors. FDA Device/Drug Status: This abstract does not discuss or include any applicable devices or drugs.