Browsing by Author "Anderson, Benjamin D"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A Case of Influenza A (H3N2) Complicated by Community-Acquired Pneumonia and Death in a Young Healthy Adult during the 2013-2014 Season.(Front Public Health, 2017) Collins, Lauren F; Anderson, Benjamin D; Gray, Gregory CWith multiple available vaccines and antivirals, seasonal influenza A is typically a self-limited acutely debilitating illness in young healthy adults. Here, we illustrate unexpected morbidity and mortality in a relatively young and healthy patient seen at a large tertiary care academic medical center for seasonal influenza A (H3N2) complicated by community-acquired pneumonia, hypoxic respiratory failure, septic shock, and death.Item Open Access Assessing the nonlinear association of environmental factors with antibiotic resistance genes (ARGs) in the Yangtze River Mouth, China.(Scientific reports, 2023-11) Miao, Jiazheng; Ling, Yikai; Chen, Xiaoyuan; Wu, Siyuan; Liu, Xinyue; Xu, Shixin; Umar, Sajid; Anderson, Benjamin DThe emergence of antibacterial resistance (ABR) is an urgent and complex public health challenge worldwide. Antibiotic resistant genes (ARGs) are considered as a new pollutant by the WHO because of their wide distribution and emerging prevalence. The role of environmental factors in developing ARGs in bacterial populations is still poorly understood. Therefore, the relationship between environmental factors and bacteria should be explored to combat ABR and propose more tailored solutions in a specific region. Here, we collected and analyzed surface water samples from Yangtze Delta, China during 2021, and assessed the nonlinear association of environmental factors with ARGs through a sigmoid model. A high abundance of ARGs was detected. Amoxicillin, phosphorus (P), chromium (Cr), manganese (Mn), calcium (Ca), and strontium (Sr) were found to be strongly associated with ARGs and identified as potential key contributors to ARG detection. Our findings suggest that the suppression of ARGs may be achieved by decreasing the concentration of phosphorus in surface water. Additionally, Group 2A light metals (e.g., magnesium and calcium) may be candidates for the development of eco-friendly reagents for controlling antibiotic resistance in the future.Item Open Access Bioaerosol Sampling in Clinical Settings: A Promising, Noninvasive Approach for Detecting Respiratory Viruses.(Open Forum Infect Dis, 2017) Nguyen, Tham T; Poh, Mee K; Low, Jenny; Kalimuddin, Shirin; Thoon, Koh C; Ng, Wai C; Anderson, Benjamin D; Gray, Gregory CBACKGROUND: Seeking a noninvasive method to conduct surveillance for respiratory pathogens, we sought to examine the usefulness of 2 types of off-the-shelf aerosol samplers to detect respiratory viruses in Singapore. METHODS: In this pilot study, we ran the aerosol samplers several times each week with patients present in the patient waiting areas at 3 primary health clinics during the months of April and May 2016. We used a SKC BioSampler with a BioLite Air Sampling Pump (run for 60 min at 8 L/min) and SKC AirChek TOUCH personal air samplers with polytetrafluoroethylene Teflon filter cassettes (run for 180 min at 5 L/min). The aerosol specimens and controls were studied with molecular assays for influenza A virus, influenza B virus, adenoviruses, and coronaviruses. RESULTS: Overall, 16 (33.3%) of the 48 specimens indicated evidence of at least 1 respiratory pathogen, with 1 (2%) positive for influenza A virus, 3 (6%) positive for influenza B virus, and 12 (25%) positive for adenovirus. CONCLUSIONS: Although we were not able to correlate molecular detection with individual patient illness, patients with common acute respiratory illnesses were present during the samplings. Combined with molecular assays, it would suggest that aerosol sampling has potential as a noninvasive method for novel respiratory virus detection in clinical settings.Item Open Access The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review.(Front Vet Sci, 2017) Anderson, Benjamin D; Lednicky, John A; Torremorell, Montserrat; Gray, Gregory CModern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, endotoxins, etc.), and efforts to detect viral aerosols in pig farms seem sparse. Data generated by such studies would be particularly useful for assessments of virus transmission and ecology. Here, we summarize the results of a literature review conducted to identify published articles related to bioaerosol generation and detection within swine production facilities, with a focus on airborne viruses. We identified 73 scientific reports, published between 1991 and 2017, which were included in this review. Of these, 19 (26.7%) used sampling methodology for the detection of viruses. Our findings show that bioaerosol sampling methodologies in swine production settings have predominately focused on the detection of bacteria and fungi, with no apparent standardization between different approaches. Information, specifically regarding virus aerosol burden in swine production settings, appears to be limited. However, the number of viral aerosol studies has markedly increased in the past 5 years. With the advent of new sampling technologies and improved diagnostics, viral bioaerosol sampling could be a promising way to conduct non-invasive viral surveillance among swine farms.