Browsing by Author "Anderson, David E"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Curved FtsZ protofilaments generate bending forces on liposome membranes.(The EMBO journal, 2009-11) Osawa, Masaki; Anderson, David E; Erickson, Harold PWe have created FtsZ-YFP-mts where an amphipathic helix on the C-terminus tethers FtsZ to the membrane. When incorporated inside multi-lamellar tubular liposomes, FtsZ-YFP-mts can assemble Z rings that generate a constriction force. When added to the outside of liposomes, FtsZ-YFP-mts bound and produced concave depressions, bending the membrane in the same direction as the Z ring inside liposomes. Prominent membrane tubules were then extruded at the intersections of concave depressions. We tested the effect of moving the membrane-targeting sequence (mts) from the C-terminus to the N-terminus, which is approximately 180 degrees from the C-terminal tether. When mts-FtsZ-YFP was applied to the outside of liposomes, it generated convex bulges, bending the membrane in the direction opposite to the concave depressions. We conclude that FtsZ protofilaments have a fixed direction of curvature, and the direction of membrane bending depends on which side of the bent protofilament the mts is attached to. This supports models in which the FtsZ constriction force is generated by protofilament bending.Item Open Access FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one.(Microbiology and molecular biology reviews : MMBR, 2010-12) Erickson, Harold P; Anderson, David E; Osawa, MasakiFtsZ, a bacterial homolog of tubulin, is well established as forming the cytoskeletal framework for the cytokinetic ring. Recent work has shown that purified FtsZ, in the absence of any other division proteins, can assemble Z rings when incorporated inside tubular liposomes. Moreover, these artificial Z rings can generate a constriction force, demonstrating that FtsZ is its own force generator. Here we review light microscope observations of how Z rings assemble in bacteria. Assembly begins with long-pitch helices that condense into the Z ring. Once formed, the Z ring can transition to short-pitch helices that are suggestive of its structure. FtsZ assembles in vitro into short protofilaments that are ∼30 subunits long. We present models for how these protofilaments might be further assembled into the Z ring. We discuss recent experiments on assembly dynamics of FtsZ in vitro, with particular attention to how two regulatory proteins, SulA and MinC, inhibit assembly. Recent efforts to develop antibacterial drugs that target FtsZ are reviewed. Finally, we discuss evidence of how FtsZ generates a constriction force: by protofilament bending into a curved conformation.