Browsing by Author "Anderson, Robert J"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Accelerated Brain Atrophy, Microstructural Decline and Connectopathy in Age-Related Macular Degeneration.(Biomedicines, 2024-01-10) Stout, Jacques A; Mahzarnia, Ali; Dai, Rui; Anderson, Robert J; Cousins, Scott; Zhuang, Jie; Lad, Eleonora M; Whitaker, Diane B; Madden, David J; Potter, Guy G; Whitson, Heather E; Badea, AlexandraAge-related macular degeneration (AMD) has recently been linked to cognitive impairment. We hypothesized that AMD modifies the brain aging trajectory, and we conducted a longitudinal diffusion MRI study on 40 participants (20 with AMD and 20 controls) to reveal the location, extent, and dynamics of AMD-related brain changes. Voxel-based analyses at the first visit identified reduced volume in AMD participants in the cuneate gyrus, associated with vision, and the temporal and bilateral cingulate gyrus, linked to higher cognition and memory. The second visit occurred 2 years after the first and revealed that AMD participants had reduced cingulate and superior frontal gyrus volumes, as well as lower fractional anisotropy (FA) for the bilateral occipital lobe, including the visual and the superior frontal cortex. We detected faster rates of volume and FA reduction in AMD participants in the left temporal cortex. We identified inter-lingual and lingual-cerebellar connections as important differentiators in AMD participants. Bundle analyses revealed that the lingual gyrus had a lower streamline length in the AMD participants at the first visit, indicating a connection between retinal and brain health. FA differences in select inter-lingual and lingual cerebellar bundles at the second visit showed downstream effects of vision loss. Our analyses revealed widespread changes in AMD participants, beyond brain networks directly involved in vision processing.Item Open Access High-resolution hybrid micro-CT imaging pipeline for mouse brain region segmentation and volumetric morphometry.(PloS one, 2024-01) Nadkarni, Rohan; Han, Zay Yar; Anderson, Robert J; Allphin, Alex J; Clark, Darin P; Badea, Alexandra; Badea, Cristian TBackground
Brain region segmentation and morphometry in humanized apolipoprotein E (APOE) mouse models with a human NOS2 background (HN) contribute to Alzheimer's disease (AD) research by demonstrating how various risk factors affect the brain. Photon-counting detector (PCD) micro-CT provides faster scan times than MRI, with superior contrast and spatial resolution to energy-integrating detector (EID) micro-CT. This paper presents a pipeline for mouse brain imaging, segmentation, and morphometry from PCD micro-CT.Methods
We used brains of 26 mice from 3 genotypes (APOE22HN, APOE33HN, APOE44HN). The pipeline included PCD and EID micro-CT scanning, hybrid (PCD and EID) iterative reconstruction, and brain region segmentation using the Small Animal Multivariate Brain Analysis (SAMBA) tool. We applied SAMBA to transfer brain region labels from our new PCD CT atlas to individual PCD brains via diffeomorphic registration. Region-based and voxel-based analyses were used for comparisons by genotype and sex.Results
Together, PCD and EID scanning take ~5 hours to produce images with a voxel size of 22 μm, which is faster than MRI protocols for mouse brain morphometry with voxel size above 40 μm. Hybrid iterative reconstruction generates PCD images with minimal artifacts and higher spatial resolution and contrast than EID images. Our PCD atlas is qualitatively and quantitatively similar to the prior MRI atlas and successfully transfers labels to PCD brains in SAMBA. Male and female mice had significant volume differences in 26 regions, including parts of the entorhinal cortex and cingulate cortex. APOE22HN brains were larger than APOE44HN brains in clusters from the hippocampus, a region where atrophy is associated with AD.Conclusions
This work establishes a pipeline for mouse brain analysis using PCD CT, from staining to imaging and labeling brain images. Our results validate the effectiveness of the approach, setting a foundation for research on AD mouse models while reducing scanning durations.Item Open Access NMR methods for characterizing the pore structures and hydrogen storage properties of microporous carbons.(J Am Chem Soc, 2010-06-30) Anderson, Robert J; McNicholas, Thomas P; Kleinhammes, Alfred; Wang, Anmiao; Liu, Jie; Wu, Yue(1)H NMR spectroscopy is used to investigate a series of microporous activated carbons derived from a poly(ether ether ketone) (PEEK) precursor with varying amounts of burnoff (BO). In particular, properties relevant to hydrogen storage are evaluated such as pore structure, average pore size, uptake, and binding energy. High-pressure NMR with in situ H(2) loading is employed with H(2) pressure ranging from 100 Pa to 10 MPa. An N(2)-cooled cryostat allows for NMR isotherm measurements at both room temperature ( approximately 290 K) and 100 K. Two distinct (1)H NMR peaks appear in the spectra which represent the gaseous H(2) in intergranular pores and the H(2) residing in micropores. The chemical shift of the micropore peak is observed to evolve with changing pressure, the magnitude of this effect being correlated to the amount of BO and therefore the structure. This is attributed to the different pressure dependence of the amount of adsorbed and non-adsorbed molecules within micropores, which experience significantly different chemical shifts due to the strong distance dependence of the ring current effect. In pores with a critical diameter of 1.2 nm or less, no pressure dependence is observed because they are not wide enough to host non-adsorbed molecules; this is the case for samples with less than 35% BO. The largest estimated pore size that can contribute to the micropore peak is estimated to be around 2.4 nm. The total H(2) uptake associated with pores of this size or smaller is evaluated via a calibration of the isotherms, with the highest amount being observed at 59% BO. Two binding energies are present in the micropores, with the lower, more dominant one being on the order of 5 kJ mol(-1) and the higher one ranging from 7 to 9 kJ mol(-1).