Browsing by Author "Arastehfar, Amir"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access COVID-19 Associated Pulmonary Aspergillosis (CAPA)-From Immunology to Treatment.(Journal of fungi (Basel, Switzerland), 2020-06) Arastehfar, Amir; Carvalho, Agostinho; van de Veerdonk, Frank L; Jenks, Jeffrey D; Koehler, Philipp; Krause, Robert; Cornely, Oliver A; S Perlin, David; Lass-Flörl, Cornelia; Hoenigl, MartinLike severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA) published until June 2020. The release of danger-associated molecular patterns during severe COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition pathways required for the activation of antiviral immunity may, paradoxically, contribute to a highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture, which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission. Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence of CAPA. Finally, the treatment of CAPA is complicated by drug-drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality creates an urgency for new antifungal drugs currently in advanced clinical development with more promising pharmacokinetic and pharmacodynamic profiles.Item Open Access Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium.(Antibiotics (Basel, Switzerland), 2020-12) Arastehfar, Amir; Gabaldón, Toni; Garcia-Rubio, Rocio; Jenks, Jeffrey D; Hoenigl, Martin; Salzer, Helmut JF; Ilkit, Macit; Lass-Flörl, Cornelia; Perlin, David SThe high clinical mortality and economic burden posed by invasive fungal infections (IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance. Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore, we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida species. The establishment of antifungal stewardship programs in both clinical and agricultural fields and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance, also requires the development of effective and fungal-specific adjuvants to be used in combination with systemic antifungals.Item Open Access Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease(Clinical Microbiology Reviews) Hoenigl, Martin; Arastehfar, Amir; Arendrup, Maiken Cavling; Brüggemann, Roger; Carvalho, Agostinho; Chiller, Tom; Chen, Sharon; Egger, Matthias; Feys, Simon; Gangneux, Jean-Pierre; Gold, Jeremy AW; Groll, Andreas H; Heylen, Jannes; Jenks, Jeffrey D; Krause, Robert; Lagrou, Katrien; Lamoth, Frédéric; Prattes, Juergen; Sedik, Sarah; Wauters, Joost; Wiederhold, Nathan P; Thompson, George RSUMMARY Fungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into “sequestered” sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.Item Open Access The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin.(Drugs, 2021-10) Hoenigl, Martin; Sprute, Rosanne; Egger, Matthias; Arastehfar, Amir; Cornely, Oliver A; Krause, Robert; Lass-Flörl, Cornelia; Prattes, Juergen; Spec, Andrej; Thompson, George R; Wiederhold, Nathan; Jenks, Jeffrey DThe epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.