Browsing by Author "Arbeeva, Liubov S"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access Age trajectories of physiological indices in relation to healthy life course.(Mech Ageing Dev, 2011-03) Arbeev, Konstantin G; Ukraintseva, Svetlana V; Akushevich, Igor; Kulminski, Alexander M; Arbeeva, Liubov S; Akushevich, Lucy; Culminskaya, Irina V; Yashin, Anatoliy IWe analysed relationship between the risk of onset of "unhealthy life" (defined as the onset of cancer, cardiovascular diseases, or diabetes) and longitudinal changes in body mass index, diastolic blood pressure, hematocrit, pulse pressure, pulse rate, and serum cholesterol in the Framingham Heart Study (Original Cohort) using the stochastic process model of human mortality and aging. The analyses demonstrate how decline in resistance to stresses and adaptive capacity accompanying human aging can be evaluated from longitudinal data. We showed how these components of the aging process, as well as deviation of the trajectories of physiological indices from those minimising the risk at respective ages, can lead to an increase in the risk of onset of unhealthy life with age. The results indicate the presence of substantial gender difference in aging related decline in stress resistance and adaptive capacity, which can contribute to differences in the shape of the sex-specific patterns of incidence rates of aging related diseases.Item Open Access Effect of the APOE Polymorphism and Age Trajectories of Physiological Variables on Mortality: Application of Genetic Stochastic Process Model of Aging.(Scientifica (Cairo), 2012) Arbeev, Konstantin G; Ukraintseva, Svetlana V; Kulminski, Alexander M; Akushevich, Igor; Arbeeva, Liubov S; Culminskaya, Irina V; Wu, Deqing; Yashin, Anatoliy IWe evaluated effects of the APOE polymorphism (carriers versus noncarriers of the e4 allele) and age trajectories of total cholesterol (CH) and diastolic blood pressure (DBP) on mortality risk in the Framingham Heart Study (original cohort). We found that long-lived carriers and noncarriers have different average age trajectories and long-lived individuals have consistently higher levels and less steep declines at old ages compared to short-lived individuals. We applied the stochastic process model of aging aimed at joint analyses of genetic and nongenetic subsamples of longitudinal data and estimated different aging-related characteristics for carriers and noncarriers which otherwise cannot be evaluated from data. We found that such characteristics differ in carriers and noncarriers: (1) carriers have better adaptive capacity than noncarriers in case of CH, whereas for DBP the opposite situation is observed; (2) mean allostatic trajectories are higher in carriers and they differ from "optimal" trajectories minimizing mortality risk; (3) noncarriers have lower baseline mortality rates at younger ages but they increase faster than those for carriers resulting in intersection at the oldest ages. Such observations strongly indicate the presence of a genetic component in respective aging-related mechanisms. Such differences may contribute to patterns of allele- and sex-specific mortality rates.Item Open Access Evaluation of genotype-specific survival using joint analysis of genetic and non-genetic subsamples of longitudinal data.(Biogerontology, 2011-04) Arbeev, Konstantin G; Ukraintseva, Svetlana V; Arbeeva, Liubov S; Akushevich, Igor; Kulminski, Alexander M; Yashin, Anatoliy ISmall sample size of genetic data is often a limiting factor for desirable accuracy of estimated genetic effects on age-specific risks and survival. Longitudinal non-genetic data containing information on survival or disease onsets of study participants for whom the genetic data were not collected may provide an additional "reserve" for increasing the accuracy of respective estimates. We present a novel method for joint analyses of "genetic" (covering individuals for whom both genetic information and mortality/morbidity data are available) and "non-genetic" (covering individuals for whom only mortality/morbidity data were collected) subsamples of longitudinal data. Our simulation studies show substantial increase in the accuracy of estimates in such joint analyses compared to analyses based on genetic subsample alone. Application of this method to analysis of the effect of common apolipoprotein E (APOE) polymorphism on survival using combined genetic and non-genetic subsamples of the Framingham Heart Study original cohort data showed that female, but not male, carriers of the APOE e4 allele have significantly worse survival than non-carriers, whereas empirical analyses did not produce any significant results for either sex.Item Open Access Genetic Structures of Population Cohorts Change with Increasing Age: Implications for Genetic Analyses of Human aging and Life Span.(Ann Gerontol Geriatr Res, 2017-06-02) Yashin, Anatoliy I; Wu, Deqing; Arbeev, Konstantin G; Arbeeva, Liubov S; Akushevich, Igor; Kulminski, Alexander; Culminskaya, Irina; Stallard, Eric; Ukraintseva, Svetlana VBACKGROUND: Correcting for the potential effects of population stratification is an important issue in genome wide association studies (GWAS) of complex traits. Principal component analysis (PCA) of the genetic structure of the population under study with subsequent incorporation of the first several principal components (PCs) in the GWAS regression model is often used for this purpose. PROBLEM: For longevity related traits such a correction may negatively affect the accuracy of genetic analyses. This is because PCs may capture genetic structure induced by mortality selection processes in genetically heterogeneous populations. DATA AND METHODS: We used the Framingham Heart Study data on life span and on individual genetic background to construct two sets of PCs. One was constructed to separate population stratification due to differences in ancestry from that induced by mortality selection. The other was constructed using genetic data on individuals of different ages without attempting to separate the ancestry effects from the mortality selection effects. The GWASs of human life span were performed using the first 20 PCs from each of the selected sets to control for possible population stratification. RESULTS: The results indicated that the GWAS that used the PC set separating population stratification induced by mortality selection from differences in ancestry produced stronger genetic signals than the GWAS that used PCs without such separation. CONCLUSION: The quality of genetic estimates in GWAS can be improved when changes in genetic structure caused by mortality selection are taken into account in controlling for possible effects of population stratification.Item Open Access Genetics of aging, health, and survival: dynamic regulation of human longevity related traits.(Front Genet, 2015) Yashin, Anatoliy I; Wu, Deqing; Arbeeva, Liubov S; Arbeev, Konstantin G; Kulminski, Alexander M; Akushevich, Igor; Kovtun, Mikhail; Culminskaya, Irina; Stallard, Eric; Li, Miaozhu; Ukraintseva, Svetlana VBACKGROUND: The roles of genetic factors in human longevity would be better understood if one can use more efficient methods in genetic analyses and investigate pleiotropic effects of genetic variants on aging and health related traits. DATA AND METHODS: We used EMMAX software with modified correction for population stratification to perform genome wide association studies (GWAS) of female lifespan from the original FHS cohort. The male data from the original FHS cohort and male and female data combined from the offspring FHS cohort were used to confirm findings. We evaluated pleiotropic effects of selected genetic variants as well as gene-smoking interactions on health and aging related traits. Then we reviewed current knowledge on functional properties of genes related to detected variants. RESULTS: The eight SNPs with genome-wide significant variants were negatively associated with lifespan in both males and females. After additional QC, two of these variants were selected for further analyses of their associations with major diseases (cancer and CHD) and physiological aging changes. Gene-smoking interactions contributed to these effects. Genes closest to detected variants appear to be involved in similar biological processes and health disorders, as those found in other studies of aging and longevity e.g., in cancer and neurodegeneration. CONCLUSIONS: The impact of genes on longevity may involve trade-off-like effects on different health traits. Genes that influence lifespan represent various molecular functions but may be involved in similar biological processes and health disorders, which could contribute to genetic heterogeneity of longevity and the lack of replication in genetic association studies.Item Open Access How lifespan associated genes modulate aging changes: lessons from analysis of longitudinal data.(Front Genet, 2013) Yashin, Anatoliy I; Arbeev, Konstantin G; Wu, Deqing; Arbeeva, Liubov S; Kulminski, Alexander; Akushevich, Igor; Culminskaya, Irina; Stallard, Eric; Ukraintseva, Svetlana VBACKGROUND AND OBJECTIVE: The influence of genes on human lifespan is mediated by biological processes that characterize body's functioning. The age trajectories of these processes contain important information about mechanisms linking aging, health, and lifespan. The objective of this paper is to investigate regularities of aging changes in different groups of individuals, including individuals with different genetic background, as well as their connections with health and lifespan. DATA AND METHOD: To reach this objective we used longitudinal data on four physiological variables, information about health and lifespan collected in the Framingham Heart Study (FHS), data on longevity alleles detected in earlier study, as well as methods of statistical modeling. RESULTS: We found that phenotypes of exceptional longevity and health are linked to distinct types of changes in physiological indices during aging. We also found that components of aging changes differ in groups of individuals with different genetic background. CONCLUSIONS: These results suggest that factors responsible for exceptional longevity and health are not necessary the same, and that postponing aging changes is associated with extreme longevity. The genetic factors which increase lifespan are associated with physiological changes typical of healthy and long-living individuals, smaller mortality risks from cancer and CVD and better estimates of adaptive capacity in statistical modeling. This indicates that extreme longevity and health related traits are likely to be less heterogeneous phenotypes than lifespan, and studying these phenotypes separately from lifespan may provide additional information about mechanisms of human aging and its relation to chronic diseases and lifespan.Item Open Access How the effects of aging and stresses of life are integrated in mortality rates: insights for genetic studies of human health and longevity.(Biogerontology, 2016-02) Yashin, Anatoliy I; Arbeev, Konstantin G; Arbeeva, Liubov S; Wu, Deqing; Akushevich, Igor; Kovtun, Mikhail; Yashkin, Arseniy; Kulminski, Alexander; Culminskaya, Irina; Stallard, Eric; Li, Miaozhu; Ukraintseva, Svetlana VIncreasing proportions of elderly individuals in developed countries combined with substantial increases in related medical expenditures make the improvement of the health of the elderly a high priority today. If the process of aging by individuals is a major cause of age related health declines then postponing aging could be an efficient strategy for improving the health of the elderly. Implementing this strategy requires a better understanding of genetic and non-genetic connections among aging, health, and longevity. We review progress and problems in research areas whose development may contribute to analyses of such connections. These include genetic studies of human aging and longevity, the heterogeneity of populations with respect to their susceptibility to disease and death, forces that shape age patterns of human mortality, secular trends in mortality decline, and integrative mortality modeling using longitudinal data. The dynamic involvement of genetic factors in (i) morbidity/mortality risks, (ii) responses to stresses of life, (iii) multi-morbidities of many elderly individuals, (iv) trade-offs for diseases, (v) genetic heterogeneity, and (vi) other relevant aging-related health declines, underscores the need for a comprehensive, integrated approach to analyze the genetic connections for all of the above aspects of aging-related changes. The dynamic relationships among aging, health, and longevity traits would be better understood if one linked several research fields within one conceptual framework that allowed for efficient analyses of available longitudinal data using the wealth of available knowledge about aging, health, and longevity already accumulated in the research field.Item Open Access How the quality of GWAS of human lifespan and health span can be improved.(Front Genet, 2013) Yashin, Anatoliy I; Arbeev, Konstantin G; Wu, Deqing; Arbeeva, Liubov S; Kulminski, Alexander M; Akushevich, Igor; Culminskaya, Irina; Stallard, Eric; Ukraintseva, Svetlana VItem Open Access Optimal Versus Realized Trajectories of Physiological Dysregulation in Aging and Their Relation to Sex-Specific Mortality Risk.(Front Public Health, 2016) Arbeev, Konstantin G; Cohen, Alan A; Arbeeva, Liubov S; Milot, Emmanuel; Stallard, Eric; Kulminski, Alexander M; Akushevich, Igor; Ukraintseva, Svetlana V; Christensen, Kaare; Yashin, Anatoliy IWhile longitudinal changes in biomarker levels and their impact on health have been characterized for individual markers, little is known about how overall marker profiles may change during aging and affect mortality risk. We implemented the recently developed measure of physiological dysregulation based on the statistical distance of biomarker profiles in the framework of the stochastic process model of aging, using data on blood pressure, heart rate, cholesterol, glucose, hematocrit, body mass index, and mortality in the Framingham original cohort. This allowed us to evaluate how physiological dysregulation is related to different aging-related characteristics such as decline in stress resistance and adaptive capacity (which typically are not observed in the data and thus can be analyzed only indirectly), and, ultimately, to estimate how such dynamic relationships increase mortality risk with age. We found that physiological dysregulation increases with age; that increased dysregulation is associated with increased mortality, and increasingly so with age; and that, in most but not all cases, there is a decreasing ability to return quickly to baseline physiological state with age. We also revealed substantial sex differences in these processes, with women becoming dysregulated more quickly but with men showing a much greater sensitivity to dysregulation in terms of mortality risk.