Browsing by Author "Archer, Gary E"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access A conjoined universal helper epitope can unveil antitumor effects of a neoantigen vaccine targeting an MHC class I-restricted neoepitope.(NPJ vaccines, 2021-01-18) Swartz, Adam M; Congdon, Kendra L; Nair, Smita K; Li, Qi-Jing; Herndon, James E; Suryadevara, Carter M; Riccione, Katherine A; Archer, Gary E; Norberg, Pamela K; Sanchez-Perez, Luis A; Sampson, John HPersonalized cancer vaccines targeting neoantigens arising from somatic missense mutations are currently being evaluated for the treatment of various cancers due to their potential to elicit a multivalent, tumor-specific immune response. Several cancers express a low number of neoantigens; in these cases, ensuring the immunotherapeutic potential of each neoantigen-derived epitope (neoepitope) is crucial. In this study, we discovered that therapeutic vaccines targeting immunodominant major histocompatibility complex (MHC) I-restricted neoepitopes require a conjoined helper epitope in order to induce a cytotoxic, neoepitope-specific CD8+ T-cell response. Furthermore, we show that the universally immunogenic helper epitope P30 can fulfill this requisite helper function. Remarkably, conjoined P30 was able to unveil immune and antitumor responses to subdominant MHC I-restricted neoepitopes that were, otherwise, poorly immunogenic. Together, these data provide key insights into effective neoantigen vaccine design and demonstrate a translatable strategy using a universal helper epitope that can improve therapeutic responses to MHC I-restricted neoepitopes.Item Open Access A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma.(PLoS One, 2012) Sampson, John H; Schmittling, Robert J; Archer, Gary E; Congdon, Kendra L; Nair, Smita K; Reap, Elizabeth A; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Mitchell, Duane ABACKGROUND: Preclinical studies in mice have demonstrated that the prophylactic depletion of immunosuppressive regulatory T-cells (T(Regs)) through targeting the high affinity interleukin-2 (IL-2) receptor (IL-2Rα/CD25) can enhance anti-tumor immunotherapy. However, therapeutic approaches are complicated by the inadvertent inhibition of IL-2Rα expressing anti-tumor effector T-cells. OBJECTIVE: To determine if changes in the cytokine milieu during lymphopenia may engender differential signaling requirements that would enable unarmed anti-IL-2Rα monoclonal antibody (MAbs) to selectively deplete T(Regs) while permitting vaccine-stimulated immune responses. METHODOLOGY: A randomized placebo-controlled pilot study was undertaken to examine the ability of the anti-IL-2Rα MAb daclizumab, given at the time of epidermal growth factor receptor variant III (EGFRvIII) targeted peptide vaccination, to safely and selectively deplete T(Regs) in patients with glioblastoma (GBM) treated with lymphodepleting temozolomide (TMZ). RESULTS AND CONCLUSIONS: Daclizumab treatment (n = 3) was well-tolerated with no symptoms of autoimmune toxicity and resulted in a significant reduction in the frequency of circulating CD4+Foxp3+ TRegs in comparison to saline controls (n = 3)( p = 0.0464). A significant (p<0.0001) inverse correlation between the frequency of TRegs and the level of EGFRvIII specific humoral responses suggests the depletion of TRegs may be linked to increased vaccine-stimulated humoral immunity. These data suggest this approach deserves further study. TRIAL REGISTRATION: ClinicalTrials.gov NCT00626015.Item Open Access EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.(PLoS One, 2014) Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John HGlioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.Item Open Access Myeloablative temozolomide enhances CD8⁺ T-cell responses to vaccine and is required for efficacy against brain tumors in mice.(PLoS One, 2013) Sanchez-Perez, Luis A; Choi, Bryan D; Archer, Gary E; Cui, Xiuyu; Flores, Catherine; Johnson, Laura A; Schmittling, Robert J; Snyder, David; Herndon, James E; Bigner, Darell D; Mitchell, Duane A; Sampson, John HTemozolomide (TMZ) is an alkylating agent shown to prolong survival in patients with high grade glioma and is routinely used to treat melanoma brain metastases. A prominent side effect of TMZ is induction of profound lymphopenia, which some suggest may be incompatible with immunotherapy. Conversely, it has been proposed that recovery from chemotherapy-induced lymphopenia may actually be exploited to potentiate T-cell responses. Here, we report the first demonstration of TMZ as an immune host-conditioning regimen in an experimental model of brain tumor and examine its impact on antitumor efficacy of a well-characterized peptide vaccine. Our results show that high-dose, myeloablative (MA) TMZ resulted in markedly reduced CD4(+), CD8(+) T-cell and CD4(+)Foxp3(+) TReg counts. Adoptive transfer of naïve CD8(+) T cells and vaccination in this setting led to an approximately 70-fold expansion of antigen-specific CD8(+) T cells over controls. Ex vivo analysis of effector functions revealed significantly enhanced levels of pro-inflammatory cytokine secretion from mice receiving MA TMZ when compared to those treated with a lower lymphodepletive, non-myeloablative (NMA) dose. Importantly, MA TMZ, but not NMA TMZ was uniquely associated with an elevation of endogenous IL-2 serum levels, which we also show was required for optimal T-cell expansion. Accordingly, in a murine model of established intracerebral tumor, vaccination-induced immunity in the setting of MA TMZ-but not lymphodepletive, NMA TMZ-led to significantly prolonged survival. Overall, these results may be used to leverage the side-effects of a clinically-approved chemotherapy and should be considered in future study design of immune-based treatments for brain tumors.Item Open Access Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma.(Oncoimmunology, 2018-01) Suryadevara, Carter M; Desai, Rupen; Abel, Melissa L; Riccione, Katherine A; Batich, Kristen A; Shen, Steven H; Chongsathidkiet, Pakawat; Gedeon, Patrick C; Elsamadicy, Aladine A; Snyder, David J; Herndon, James E; Healy, Patrick; Archer, Gary E; Choi, Bryan D; Fecci, Peter E; Sampson, John H; Sanchez-Perez, LuisAdoptive transfer of T cells expressing chimeric antigen receptors (CARs) is an effective immunotherapy for B-cell malignancies but has failed in some solid tumors clinically. Intracerebral tumors may pose challenges that are even more significant. In order to devise a treatment strategy for patients with glioblastoma (GBM), we evaluated CARs as a monotherapy in a murine model of GBM. CARs exhibited poor expansion and survival in circulation and failed to treat syngeneic and orthotopic gliomas. We hypothesized that CAR engraftment would benefit from host lymphodepletion prior to immunotherapy and that this might be achievable by using temozolomide (TMZ), which is standard treatment for these patients and has lymphopenia as its major side effect. We modelled standard of care temozolomide (TMZSD) and dose-intensified TMZ (TMZDI) in our murine model. Both regimens are clinically approved and provide similar efficacy. Only TMZDI pretreatment prompted dramatic CAR proliferation and enhanced persistence in circulation compared to treatment with CARs alone or TMZSD + CARs. Bioluminescent imaging revealed that TMZDI + CARs induced complete regression of 21-day established brain tumors, which correlated with CAR abundance in circulation. Accordingly, TMZDI + CARs significantly prolonged survival and led to long-term survivors. These findings are highly consequential, as it suggests that GBM patients may require TMZDI as first line chemotherapy prior to systemic CAR infusion to promote CAR engraftment and antitumor efficacy. On this basis, we have initiated a phase I trial in patients with newly diagnosed GBM incorporating TMZDI as a preconditioning regimen prior to CAR immunotherapy (NCT02664363).Item Open Access Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.(Nature, 2015-03-19) Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John HAfter stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.