Browsing by Author "Ashley-Koch, Allison E"
Results Per Page
Sort Options
Item Open Access A Genocentric Approach to Discovery of Mendelian Disorders.(American journal of human genetics, 2019-11) Hansen, Adam W; Murugan, Mullai; Li, He; Khayat, Michael M; Wang, Liwen; Rosenfeld, Jill; Andrews, B Kim; Jhangiani, Shalini N; Coban Akdemir, Zeynep H; Sedlazeck, Fritz J; Ashley-Koch, Allison E; Liu, Pengfei; Muzny, Donna M; Task Force for Neonatal Genomics; Davis, Erica E; Katsanis, Nicholas; Sabo, Aniko; Posey, Jennifer E; Yang, Yaping; Wangler, Michael F; Eng, Christine M; Sutton, V Reid; Lupski, James R; Boerwinkle, Eric; Gibbs, Richard AThe advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.Item Open Access An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci.(Clinical epigenetics, 2020-03) Logue, Mark W; Miller, Mark W; Wolf, Erika J; Huber, Bertrand Russ; Morrison, Filomene G; Zhou, Zhenwei; Zheng, Yuanchao; Smith, Alicia K; Daskalakis, Nikolaos P; Ratanatharathorn, Andrew; Uddin, Monica; Nievergelt, Caroline M; Ashley-Koch, Allison E; Baker, Dewleen G; Beckham, Jean C; Garrett, Melanie E; Boks, Marco P; Geuze, Elbert; Grant, Gerald A; Hauser, Michael A; Kessler, Ronald C; Kimbrel, Nathan A; Maihofer, Adam X; Marx, Christine E; Qin, Xue-Jun; Risbrough, Victoria B; Rutten, Bart PF; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Ware, Erin B; Stone, Annjanette; Schichman, Steven A; McGlinchey, Regina E; Milberg, William P; Hayes, Jasmeet P; Verfaellie, Mieke; Traumatic Stress Brain Study GroupBackground
Previous studies using candidate gene and genome-wide approaches have identified epigenetic changes in DNA methylation (DNAm) associated with posttraumatic stress disorder (PTSD).Methods
In this study, we performed an EWAS of PTSD in a cohort of Veterans (n = 378 lifetime PTSD cases and 135 controls) from the Translational Research Center for TBI and Stress Disorders (TRACTS) cohort assessed using the Illumina EPIC Methylation BeadChip which assesses DNAm at more than 850,000 sites throughout the genome. Our model included covariates for ancestry, cell heterogeneity, sex, age, and a smoking score based on DNAm at 39 smoking-associated CpGs. We also examined in EPIC-based DNAm data generated from pre-frontal cortex (PFC) tissue from the National PTSD Brain Bank (n = 72).Results
The analysis of blood samples yielded one genome-wide significant association with PTSD at cg19534438 in the gene G0S2 (p = 1.19 × 10-7, padj = 0.048). This association was replicated in an independent PGC-PTSD-EWAS consortium meta-analysis of military cohorts (p = 0.0024). We also observed association with the smoking-related locus cg05575921 in AHRR despite inclusion of a methylation-based smoking score covariate (p = 9.16 × 10-6), which replicates a previously observed PGC-PTSD-EWAS association (Smith et al. 2019), and yields evidence consistent with a smoking-independent effect. The top 100 EWAS loci were then examined in the PFC data. One of the blood-based PTSD loci, cg04130728 in CHST11, which was in the top 10 loci in blood, but which was not genome-wide significant, was significantly associated with PTSD in brain tissue (in blood p = 1.19 × 10-5, padj = 0.60, in brain, p = 0.00032 with the same direction of effect). Gene set enrichment analysis of the top 500 EWAS loci yielded several significant overlapping GO terms involved in pathogen response, including "Response to lipopolysaccharide" (p = 6.97 × 10-6, padj = 0.042).Conclusions
The cross replication observed in independent cohorts is evidence that DNA methylation in peripheral tissue can yield consistent and replicable PTSD associations, and our results also suggest that that some PTSD associations observed in peripheral tissue may mirror associations in the brain.Item Open Access Characterizing epigenetic aging in an adult sickle cell disease cohort.(Blood advances, 2024-01) Lê, Brandon M; Hatch, Daniel; Yang, Qing; Shah, Nirmish; Luyster, Faith S; Garrett, Melanie E; Tanabe, Paula; Ashley-Koch, Allison E; Knisely, Mitchell RAbstract
Sickle cell disease (SCD) affects ∼100 000 predominantly African American individuals in the United States, causing significant cellular damage, increased disease complications, and premature death. However, the contribution of epigenetic factors to SCD pathophysiology remains relatively unexplored. DNA methylation (DNAm), a primary epigenetic mechanism for regulating gene expression in response to the environment, is an important driver of normal cellular aging. Several DNAm epigenetic clocks have been developed to serve as a proxy for cellular aging. We calculated the epigenetic ages of 89 adults with SCD (mean age, 30.64 years; 60.64% female) using 5 published epigenetic clocks: Horvath, Hannum, PhenoAge, GrimAge, and DunedinPACE. We hypothesized that in chronic disease, such as SCD, individuals would demonstrate epigenetic age acceleration, but the results differed depending on the clock used. Recently developed clocks more consistently demonstrated acceleration (GrimAge, DunedinPACE). Additional demographic and clinical phenotypes were analyzed to explore their association with epigenetic age estimates. Chronological age was significantly correlated with epigenetic age in all clocks (Horvath, r = 0.88; Hannum, r = 0.89; PhenoAge, r = 0.85; GrimAge, r = 0.88; DunedinPACE, r = 0.34). The SCD genotype was associated with 2 clocks (PhenoAge, P = .02; DunedinPACE, P < .001). Genetic ancestry, biological sex, β-globin haplotypes, BCL11A rs11886868, and SCD severity were not associated. These findings, among the first to interrogate epigenetic aging in adults with SCD, demonstrate epigenetic age acceleration with recently developed epigenetic clocks but not older-generation clocks. Further development of epigenetic clocks may improve their predictive ability and utility for chronic diseases such as SCD.Item Open Access Gene Expression Analysis in Three Posttraumatic Stress Disorder Cohorts Implicates Inflammation and Innate Immunity Pathways and Uncovers Shared Genetic Risk With Major Depressive Disorder.(Frontiers in neuroscience, 2021-01) Garrett, Melanie E; Qin, Xue Jun; Mehta, Divya; Dennis, Michelle F; Marx, Christine E; Grant, Gerald A; VA Mid-Atlantic MIRECC Workgroup; PTSD Initiative; Injury and Traumatic Stress (INTRuST) Clinical Consortium; Psychiatric Genomics Consortium PTSD Group; Stein, Murray B; Kimbrel, Nathan A; Beckham, Jean C; Hauser, Michael A; Ashley-Koch, Allison EPosttraumatic stress disorder (PTSD) is a complex psychiatric disorder that can develop following exposure to traumatic events. The Psychiatric Genomics Consortium PTSD group (PGC-PTSD) has collected over 20,000 multi-ethnic PTSD cases and controls and has identified both genetic and epigenetic factors associated with PTSD risk. To further investigate biological correlates of PTSD risk, we examined three PGC-PTSD cohorts comprising 977 subjects to identify differentially expressed genes among PTSD cases and controls. Whole blood gene expression was quantified with the HumanHT-12 v4 Expression BeadChip for 726 OEF/OIF veterans from the Veterans Affairs (VA) Mental Illness Research Education and Clinical Center (MIRECC), 155 samples from the Injury and Traumatic Stress (INTRuST) Clinical Consortium, and 96 Australian Vietnam War veterans. Differential gene expression analysis was performed in each cohort separately followed by meta-analysis. In the largest cohort, we performed co-expression analysis to identify modules of genes that are associated with PTSD and MDD. We then conducted expression quantitative trait loci (eQTL) analysis and assessed the presence of eQTL interactions involving PTSD and major depressive disorder (MDD). Finally, we utilized PTSD and MDD GWAS summary statistics to identify regions that colocalize with eQTLs. Although not surpassing correction for multiple testing, the most differentially expressed genes in meta-analysis were interleukin-1 beta (IL1B), a pro-inflammatory cytokine previously associated with PTSD, and integrin-linked kinase (ILK), which is highly expressed in brain and can rescue dysregulated hippocampal neurogenesis and memory deficits. Pathway analysis revealed enrichment of toll-like receptor (TLR) and interleukin-1 receptor genes, which are integral to cellular innate immune response. Co-expression analysis identified four modules of genes associated with PTSD, two of which are also associated with MDD, demonstrating common biological pathways underlying the two conditions. Lastly, we identified four genes (UBA7, HLA-F, HSPA1B, and RERE) with high probability of a shared causal eQTL variant with PTSD and/or MDD GWAS variants, thereby providing a potential mechanism by which the GWAS variant contributes to disease risk. In summary, we provide additional evidence for genes and pathways previously reported and identified plausible novel candidates for PTSD. These data provide further insight into genetic factors and pathways involved in PTSD, as well as potential regions of pleiotropy between PTSD and MDD.Item Open Access Generalized admixture mapping for complex traits.(G3 (Bethesda), 2013-07-08) Zhu, Bin; Ashley-Koch, Allison E; Dunson, David BAdmixture mapping is a popular tool to identify regions of the genome associated with traits in a recently admixed population. Existing methods have been developed primarily for identification of a single locus influencing a dichotomous trait within a case-control study design. We propose a generalized admixture mapping (GLEAM) approach, a flexible and powerful regression method for both quantitative and qualitative traits, which is able to test for association between the trait and local ancestries in multiple loci simultaneously and adjust for covariates. The new method is based on the generalized linear model and uses a quadratic normal moment prior to incorporate admixture prior information. Through simulation, we demonstrate that GLEAM achieves lower type I error rate and higher power than ANCESTRYMAP both for qualitative traits and more significantly for quantitative traits. We applied GLEAM to genome-wide SNP data from the Illumina African American panel derived from a cohort of black women participating in the Healthy Pregnancy, Healthy Baby study and identified a locus on chromosome 2 associated with the averaged maternal mean arterial pressure during 24 to 28 weeks of pregnancy.Item Open Access Genetic Dissection and In Vivo Modeling of Sickle Cell Disease Nephropathy(2016) Anderson, BlairA common complication among sickle cell disease (SCD) patients is the development of renal disease. Paradoxically, the incidence of chronic kidney disease (CKD) increases as patient survival improves, and as such the development of sickle cell disease nephropathy (SCDN) has become an emergent health concern in SCD. For individuals with sickle cell anemia (SCA), albuminuria rates are as high as 68% in adult patients and as many as 18% of these patients progress to end-stage renal disease (ESRD). The detection of SCDN relies on relatively late markers of the disease process, namely proteinuria and reduced glomerular filtration rate (GFR), delaying identification of at-risk SCD patients prior to organ damage. Thus, early detection of those at risk is required to reduce morbidity and mortality among SCD patients.
In order to accomplish this, we have used a tiered approach employing genetic association strategy in patient populations and functional examination in relevant zebrafish model systems. We demonstrated previously that MYH9 and APOL1, in linkage disequilibrium on chromosome 22, are strong, independent predictors of risk for proteinuria in SCD. This region, particularly two major risk variants (named G1 and G2) in APOL1, has been replicated widely in non-SCD nephropathy and represents one of the strongest genetic signals for a complex human phenotype. Using the zebrafish system, we discovered a functional role for APOL1 in the developing zebrafish kidney and uncovered a complex genetic architecture, in which the G2 allele exerts adverse functions on the kidney and kidney cell types. Critically, we also found that APOL1 and MYH9 interact genetically, particularly in the context of anemic stress, which we also observed in a SCD patient population.
However, variants at the MYH9/APOL1 locus appear to only explain a part of the disease risk, suggesting that additional genetic factors may be contributing to renal outcome in SCD patients. As such, we performed an unbiased interrogation of the genome (GWAS) in order to uncover putative new nephropathy genes for genetic evaluation. Using a host of genetic methods to identify both common and rare variation present in SCDN individuals, we identified seven candidate loci associated with renal outcome in SCD. Again, using zebrafish models, we provide relevant functional evidence for a subset of these genetic candidates by assessing their effect on glomerular filtration barrier integrity.
Collectively, these genes and markers may indicate novel genetic mechanisms contributing to SCD nephropathy, and may further diagnostic paradigms for identifying those patients most at risk. In addition, these results stand to make significant progress in identifying novel therapeutics for SCDN.
Item Open Access Genetic Dissection of Chiari Type I Malformation(2013) Markunas, Christina AnnChiari Type I Malformation (CMI) is a developmental disorder characterized by displacement of the cerebellar tonsils below the base of the skull, resulting in significant neurologic morbidity. While there are multiple proposed mechanisms for tonsillar herniation, "classical" CMI is thought to occur due to a compromised posterior cranial fossa (PF). As CMI patients display a high degree of clinical variability, it is hypothesized that this heterogeneous disorder has a complex etiology influenced by multiple genetic and environmental factors. Despite the fact that multiple lines of evidence support a genetic contribution to disease, no genes have been identified to date. Thus, the primary goal of this dissertation is to begin to dissect the genetic etiology of this important disorder and gain a better understanding of what factors contribute to the observed disease heterogeneity.
In order to address these goals, two studies and three distinct analytic approaches were carried out. In the first study, 367 individuals from 66 nonsyndromic, CMI multiplex families provided the basis for a whole genome linkage screen to identify genomic regions likely to harbor CMI susceptibility genes. Results from the linkage screen using the complete collection of families yielded limited evidence for linkage, likely due to genetic heterogeneity. Thus, two separate analytic approaches were applied to the data to reduce phenotypic and hopefully genetic heterogeneity, thereby increasing power to identify disease genes. In the first approach, families were stratified based on the presence or absence of connective tissue disorder (CTD) related conditions as hereditary CTDs are commonly associated with CMI and the presumed mechanism for tonsillar herniation differs between CMI patients with CTDs and "classical" CMI patients. Stratified analyses resulted in increased evidence for linkage to multiple genomic regions. Of particular interest were two regions located on chromosomes 8 and 12, both of which harbor growth differentiation factors, GDF6 and GDF3, which have been implicated in Klippel-Feil syndrome (KFS). In the second approach, a comprehensive evaluation of the genetic contribution to the PF was performed, followed by ordered subset analysis (OSA) using heritable, disease-relevant PF traits to identify increased evidence for linkage within subsets of families that were similar with respect to cranial base morphological traits. Much of the PF was found to be heritable and results from OSA identified multiple genomic regions showing increased evidence for linkage, including regions on chromosomes 1 and 22 which implicated several strong biological candidates for disease.
In the second study, 44 pediatric, surgical CMI patients were ascertained in order to establish disease subtypes using whole genome expression profiles generated from patient blood and dura mater samples and radiological data consisting of PF morphometrics. Sparse k-means clustering as well as a modified version were used to cluster patients using the biological and radiological data both separately and collectively. The most significant patient classes were identified from the pure biological clustering analyses. Further characterization of these classes implicated strong biological candidates involved in endochondral ossification from the dura analysis and a blood gene expression profile exhibiting a global down-regulation in protein synthesis and related pathways that may be associated with comorbid conditions.
Collectively, these studies established several strong biological disease candidates, as well as emphasized the need to better understand and account for disease heterogeneity, re-evaluate the current diagnostic criteria for CMI, and continue to investigate the use of endophenotypes, such as cranial base morphometrics, when conducting genetic studies.
Item Open Access Genetic diversity fuels gene discovery for tobacco and alcohol use.(Nature, 2022-12) Saunders, Gretchen RB; Wang, Xingyan; Chen, Fang; Jang, Seon-Kyeong; Liu, Mengzhen; Wang, Chen; Gao, Shuang; Jiang, Yu; Khunsriraksakul, Chachrit; Otto, Jacqueline M; Addison, Clifton; Akiyama, Masato; Albert, Christine M; Aliev, Fazil; Alonso, Alvaro; Arnett, Donna K; Ashley-Koch, Allison E; Ashrani, Aneel A; Barnes, Kathleen C; Barr, R Graham; Bartz, Traci M; Becker, Diane M; Bielak, Lawrence F; Benjamin, Emelia J; Bis, Joshua C; Bjornsdottir, Gyda; Blangero, John; Bleecker, Eugene R; Boardman, Jason D; Boerwinkle, Eric; Boomsma, Dorret I; Boorgula, Meher Preethi; Bowden, Donald W; Brody, Jennifer A; Cade, Brian E; Chasman, Daniel I; Chavan, Sameer; Chen, Yii-Der Ida; Chen, Zhengming; Cheng, Iona; Cho, Michael H; Choquet, Hélène; Cole, John W; Cornelis, Marilyn C; Cucca, Francesco; Curran, Joanne E; de Andrade, Mariza; Dick, Danielle M; Docherty, Anna R; Duggirala, Ravindranath; Eaton, Charles B; Ehringer, Marissa A; Esko, Tõnu; Faul, Jessica D; Fernandes Silva, Lilian; Fiorillo, Edoardo; Fornage, Myriam; Freedman, Barry I; Gabrielsen, Maiken E; Garrett, Melanie E; Gharib, Sina A; Gieger, Christian; Gillespie, Nathan; Glahn, David C; Gordon, Scott D; Gu, Charles C; Gu, Dongfeng; Gudbjartsson, Daniel F; Guo, Xiuqing; Haessler, Jeffrey; Hall, Michael E; Haller, Toomas; Harris, Kathleen Mullan; He, Jiang; Herd, Pamela; Hewitt, John K; Hickie, Ian; Hidalgo, Bertha; Hokanson, John E; Hopfer, Christian; Hottenga, JoukeJan; Hou, Lifang; Huang, Hongyan; Hung, Yi-Jen; Hunter, David J; Hveem, Kristian; Hwang, Shih-Jen; Hwu, Chii-Min; Iacono, William; Irvin, Marguerite R; Jee, Yon Ho; Johnson, Eric O; Joo, Yoonjung Y; Jorgenson, Eric; Justice, Anne E; Kamatani, Yoichiro; Kaplan, Robert C; Kaprio, Jaakko; Kardia, Sharon LR; Keller, Matthew C; Kelly, Tanika N; Kooperberg, Charles; Korhonen, Tellervo; Kraft, Peter; Krauter, Kenneth; Kuusisto, Johanna; Laakso, Markku; Lasky-Su, Jessica; Lee, Wen-Jane; Lee, James J; Levy, Daniel; Li, Liming; Li, Kevin; Li, Yuqing; Lin, Kuang; Lind, Penelope A; Liu, Chunyu; Lloyd-Jones, Donald M; Lutz, Sharon M; Ma, Jiantao; Mägi, Reedik; Manichaikul, Ani; Martin, Nicholas G; Mathur, Ravi; Matoba, Nana; McArdle, Patrick F; McGue, Matt; McQueen, Matthew B; Medland, Sarah E; Metspalu, Andres; Meyers, Deborah A; Millwood, Iona Y; Mitchell, Braxton D; Mohlke, Karen L; Moll, Matthew; Montasser, May E; Morrison, Alanna C; Mulas, Antonella; Nielsen, Jonas B; North, Kari E; Oelsner, Elizabeth C; Okada, Yukinori; Orrù, Valeria; Palmer, Nicholette D; Palviainen, Teemu; Pandit, Anita; Park, S Lani; Peters, Ulrike; Peters, Annette; Peyser, Patricia A; Polderman, Tinca JC; Rafaels, Nicholas; Redline, Susan; Reed, Robert M; Reiner, Alex P; Rice, John P; Rich, Stephen S; Richmond, Nicole E; Roan, Carol; Rotter, Jerome I; Rueschman, Michael N; Runarsdottir, Valgerdur; Saccone, Nancy L; Schwartz, David A; Shadyab, Aladdin H; Shi, Jingchunzi; Shringarpure, Suyash S; Sicinski, Kamil; Skogholt, Anne Heidi; Smith, Jennifer A; Smith, Nicholas L; Sotoodehnia, Nona; Stallings, Michael C; Stefansson, Hreinn; Stefansson, Kari; Stitzel, Jerry A; Sun, Xiao; Syed, Moin; Tal-Singer, Ruth; Taylor, Amy E; Taylor, Kent D; Telen, Marilyn J; Thai, Khanh K; Tiwari, Hemant; Turman, Constance; Tyrfingsson, Thorarinn; Wall, Tamara L; Walters, Robin G; Weir, David R; Weiss, Scott T; White, Wendy B; Whitfield, John B; Wiggins, Kerri L; Willemsen, Gonneke; Willer, Cristen J; Winsvold, Bendik S; Xu, Huichun; Yanek, Lisa R; Yin, Jie; Young, Kristin L; Young, Kendra A; Yu, Bing; Zhao, Wei; Zhou, Wei; Zöllner, Sebastian; Zuccolo, Luisa; 23andMe Research Team; Biobank Japan Project; Batini, Chiara; Bergen, Andrew W; Bierut, Laura J; David, Sean P; Gagliano Taliun, Sarah A; Hancock, Dana B; Jiang, Bibo; Munafò, Marcus R; Thorgeirsson, Thorgeir E; Liu, Dajiang J; Vrieze, ScottTobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.Item Open Access GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors.(The American journal of psychiatry, 2023-10) Docherty, Anna R; Mullins, Niamh; Ashley-Koch, Allison E; Qin, Xuejun; Coleman, Jonathan RI; Shabalin, Andrey; Kang, JooEun; Murnyak, Balasz; Wendt, Frank; Adams, Mark; Campos, Adrian I; DiBlasi, Emily; Fullerton, Janice M; Kranzler, Henry R; Bakian, Amanda V; Monson, Eric T; Rentería, Miguel E; Walss-Bass, Consuelo; Andreassen, Ole A; Behera, Chittaranjan; Bulik, Cynthia M; Edenberg, Howard J; Kessler, Ronald C; Mann, J John; Nurnberger, John I; Pistis, Giorgio; Streit, Fabian; Ursano, Robert J; Polimanti, Renato; Dennis, Michelle; Garrett, Melanie; Hair, Lauren; Harvey, Philip; Hauser, Elizabeth R; Hauser, Michael A; Huffman, Jennifer; Jacobson, Daniel; Madduri, Ravi; McMahon, Benjamin; Oslin, David W; Trafton, Jodie; Awasthi, Swapnil; Berrettini, Wade H; Bohus, Martin; Chang, Xiao; Chen, Hsi-Chung; Chen, Wei J; Christensen, Erik D; Crow, Scott; Duriez, Philibert; Edwards, Alexis C; Fernández-Aranda, Fernando; Galfalvy, Hanga; Gandal, Michael; Gorwood, Philip; Guo, Yiran; Hafferty, Jonathan D; Hakonarson, Hakon; Halmi, Katherine A; Hishimoto, Akitoyo; Jain, Sonia; Jamain, Stéphane; Jiménez-Murcia, Susana; Johnson, Craig; Kaplan, Allan S; Kaye, Walter H; Keel, Pamela K; Kennedy, James L; Kim, Minsoo; Klump, Kelly L; Levey, Daniel F; Li, Dong; Liao, Shih-Cheng; Lieb, Klaus; Lilenfeld, Lisa; Marshall, Christian R; Mitchell, James E; Okazaki, Satoshi; Otsuka, Ikuo; Pinto, Dalila; Powers, Abigail; Ramoz, Nicolas; Ripke, Stephan; Roepke, Stefan; Rozanov, Vsevolod; Scherer, Stephen W; Schmahl, Christian; Sokolowski, Marcus; Starnawska, Anna; Strober, Michael; Su, Mei-Hsin; Thornton, Laura M; Treasure, Janet; Ware, Erin B; Watson, Hunna J; Witt, Stephanie H; Woodside, D Blake; Yilmaz, Zeynep; Zillich, Lea; Adolfsson, Rolf; Agartz, Ingrid; Alda, Martin; Alfredsson, Lars; Appadurai, Vivek; Artigas, María Soler; Van der Auwera, Sandra; Azevedo, M Helena; Bass, Nicholas; Bau, Claiton HD; Baune, Bernhard T; Bellivier, Frank; Berger, Klaus; Biernacka, Joanna M; Bigdeli, Tim B; Binder, Elisabeth B; Boehnke, Michael; Boks, Marco P; Braff, David L; Bryant, Richard; Budde, Monika; Byrne, Enda M; Cahn, Wiepke; Castelao, Enrique; Cervilla, Jorge A; Chaumette, Boris; Corvin, Aiden; Craddock, Nicholas; Djurovic, Srdjan; Foo, Jerome C; Forstner, Andreas J; Frye, Mark; Gatt, Justine M; Giegling, Ina; Grabe, Hans J; Green, Melissa J; Grevet, Eugenio H; Grigoroiu-Serbanescu, Maria; Gutierrez, Blanca; Guzman-Parra, Jose; Hamshere, Marian L; Hartmann, Annette M; Hauser, Joanna; Heilmann-Heimbach, Stefanie; Hoffmann, Per; Ising, Marcus; Jones, Ian; Jones, Lisa A; Jonsson, Lina; Kahn, René S; Kelsoe, John R; Kendler, Kenneth S; Kloiber, Stefan; Koenen, Karestan C; Kogevinas, Manolis; Krebs, Marie-Odile; Landén, Mikael; Leboyer, Marion; Lee, Phil H; Levinson, Douglas F; Liao, Calwing; Lissowska, Jolanta; Mayoral, Fermin; McElroy, Susan L; McGrath, Patrick; McGuffin, Peter; McQuillin, Andrew; Mehta, Divya; Melle, Ingrid; Mitchell, Philip B; Molina, Esther; Morken, Gunnar; Nievergelt, Caroline; Nöthen, Markus M; O'Donovan, Michael C; Ophoff, Roel A; Owen, Michael J; Pato, Carlos; Pato, Michele T; Penninx, Brenda WJH; Potash, James B; Power, Robert A; Preisig, Martin; Quested, Digby; Ramos-Quiroga, Josep Antoni; Reif, Andreas; Ribasés, Marta; Richarte, Vanesa; Rietschel, Marcella; Rivera, Margarita; Roberts, Andrea; Roberts, Gloria; Rouleau, Guy A; Rovaris, Diego L; Sanders, Alan R; Schofield, Peter R; Schulze, Thomas G; Scott, Laura J; Serretti, Alessandro; Shi, Jianxin; Sirignano, Lea; Sklar, Pamela; Smeland, Olav B; Smoller, Jordan W; Sonuga-Barke, Edmund JS; Trzaskowski, Maciej; Tsuang, Ming T; Turecki, Gustavo; Vilar-Ribó, Laura; Vincent, John B; Völzke, Henry; Walters, James TR; Weickert, Cynthia Shannon; Weickert, Thomas W; Weissman, Myrna M; Williams, Leanne M; Wray, Naomi R; Zai, Clement C; Agerbo, Esben; Børglum, Anders D; Breen, Gerome; Demontis, Ditte; Erlangsen, Annette; Gelernter, Joel; Glatt, Stephen J; Hougaard, David M; Hwu, Hai-Gwo; Kuo, Po-Hsiu; Lewis, Cathryn M; Li, Qingqin S; Liu, Chih-Min; Martin, Nicholas G; McIntosh, Andrew M; Medland, Sarah E; Mors, Ole; Nordentoft, Merete; Olsen, Catherine M; Porteous, David; Smith, Daniel J; Stahl, Eli A; Stein, Murray B; Wasserman, Danuta; Werge, Thomas; Whiteman, David C; Willour, Virginia; VA Million Veteran Program (MVP); MVP Suicide Exemplar Workgroup; Suicide Working Group of the Psychiatric Genomics Consortium; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium; Bipolar Disorder Working Group of the Psychiatric Genomics Consortium; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Eating Disorder Working Group of the Psychiatric Genomics Consortium; German Borderline Genomics Consortium; Coon, Hilary; Beckham, Jean C; Kimbrel, Nathan A; Ruderfer, Douglas MObjective
Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures.Methods
This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses.Results
Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values <5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors.Conclusions
This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.Item Open Access Identification of Chiari Type I Malformation subtypes using whole genome expression profiles and cranial base morphometrics.(BMC medical genomics, 2014-06) Markunas, Christina A; Lock, Eric; Soldano, Karen; Cope, Heidi; Ding, Chien-Kuang C; Enterline, David S; Grant, Gerald; Fuchs, Herbert; Ashley-Koch, Allison E; Gregory, Simon GBackground
Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum at the base of the skull, resulting in significant neurologic morbidity. As CMI patients display a high degree of clinical variability and multiple mechanisms have been proposed for tonsillar herniation, it is hypothesized that this heterogeneous disorder is due to multiple genetic and environmental factors. The purpose of the present study was to gain a better understanding of what factors contribute to this heterogeneity by using an unsupervised statistical approach to define disease subtypes within a case-only pediatric population.Methods
A collection of forty-four pediatric CMI patients were ascertained to identify disease subtypes using whole genome expression profiles generated from patient blood and dura mater tissue samples, and radiological data consisting of posterior fossa (PF) morphometrics. Sparse k-means clustering and an extension to accommodate multiple data sources were used to cluster patients into more homogeneous groups using biological and radiological data both individually and collectively.Results
All clustering analyses resulted in the significant identification of patient classes, with the pure biological classes derived from patient blood and dura mater samples demonstrating the strongest evidence. Those patient classes were further characterized by identifying enriched biological pathways, as well as correlated cranial base morphological and clinical traits.Conclusions
Our results implicate several strong biological candidates warranting further investigation from the dura expression analysis and also identified a blood gene expression profile corresponding to a global down-regulation in protein synthesis.Item Open Access In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress.(PLoS Genet, 2015-07) Anderson, Blair R; Howell, David N; Soldano, Karen; Garrett, Melanie E; Katsanis, Nicholas; Telen, Marilyn J; Davis, Erica E; Ashley-Koch, Allison EAfrican Americans have a disproportionate risk for developing nephropathy. This disparity has been attributed to coding variants (G1 and G2) in apolipoprotein L1 (APOL1); however, there is little functional evidence supporting the role of this protein in renal function. Here, we combined genetics and in vivo modeling to examine the role of apol1 in glomerular development and pronephric filtration and to test the pathogenic potential of APOL1 G1 and G2. Translational suppression or CRISPR/Cas9 genome editing of apol1 in zebrafish embryos results in podocyte loss and glomerular filtration defects. Complementation of apol1 morphants with wild-type human APOL1 mRNA rescues these defects. However, the APOL1 G1 risk allele does not ameliorate defects caused by apol1 suppression and the pathogenicity is conferred by the cis effect of both individual variants of the G1 risk haplotype (I384M/S342G). In vivo complementation studies of the G2 risk allele also indicate that the variant is deleterious to protein function. Moreover, APOL1 G2, but not G1, expression alone promotes developmental kidney defects, suggesting a possible dominant-negative effect of the altered protein. In sickle cell disease (SCD) patients, we reported previously a genetic interaction between APOL1 and MYH9. Testing this interaction in vivo by co-suppressing both transcripts yielded no additive effects. However, upon genetic or chemical induction of anemia, we observed a significantly exacerbated nephropathy phenotype. Furthermore, concordant with the genetic interaction observed in SCD patients, APOL1 G2 reduces myh9 expression in vivo, suggesting a possible interaction between the altered APOL1 and myh9. Our data indicate a critical role for APOL1 in renal function that is compromised by nephropathy-risk encoding variants. Moreover, our interaction studies indicate that the MYH9 locus is also relevant to the phenotype in a stressed microenvironment and suggest that consideration of the context-dependent functions of both proteins will be required to develop therapeutic paradigms.Item Open Access International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci.(Nature communications, 2019-10) Nievergelt, Caroline M; Maihofer, Adam X; Klengel, Torsten; Atkinson, Elizabeth G; Chen, Chia-Yen; Choi, Karmel W; Coleman, Jonathan RI; Dalvie, Shareefa; Duncan, Laramie E; Gelernter, Joel; Levey, Daniel F; Logue, Mark W; Polimanti, Renato; Provost, Allison C; Ratanatharathorn, Andrew; Stein, Murray B; Torres, Katy; Aiello, Allison E; Almli, Lynn M; Amstadter, Ananda B; Andersen, Søren B; Andreassen, Ole A; Arbisi, Paul A; Ashley-Koch, Allison E; Austin, S Bryn; Avdibegovic, Esmina; Babić, Dragan; Bækvad-Hansen, Marie; Baker, Dewleen G; Beckham, Jean C; Bierut, Laura J; Bisson, Jonathan I; Boks, Marco P; Bolger, Elizabeth A; Børglum, Anders D; Bradley, Bekh; Brashear, Megan; Breen, Gerome; Bryant, Richard A; Bustamante, Angela C; Bybjerg-Grauholm, Jonas; Calabrese, Joseph R; Caldas-de-Almeida, José M; Dale, Anders M; Daly, Mark J; Daskalakis, Nikolaos P; Deckert, Jürgen; Delahanty, Douglas L; Dennis, Michelle F; Disner, Seth G; Domschke, Katharina; Dzubur-Kulenovic, Alma; Erbes, Christopher R; Evans, Alexandra; Farrer, Lindsay A; Feeny, Norah C; Flory, Janine D; Forbes, David; Franz, Carol E; Galea, Sandro; Garrett, Melanie E; Gelaye, Bizu; Geuze, Elbert; Gillespie, Charles; Uka, Aferdita Goci; Gordon, Scott D; Guffanti, Guia; Hammamieh, Rasha; Harnal, Supriya; Hauser, Michael A; Heath, Andrew C; Hemmings, Sian MJ; Hougaard, David Michael; Jakovljevic, Miro; Jett, Marti; Johnson, Eric Otto; Jones, Ian; Jovanovic, Tanja; Qin, Xue-Jun; Junglen, Angela G; Karstoft, Karen-Inge; Kaufman, Milissa L; Kessler, Ronald C; Khan, Alaptagin; Kimbrel, Nathan A; King, Anthony P; Koen, Nastassja; Kranzler, Henry R; Kremen, William S; Lawford, Bruce R; Lebois, Lauren AM; Lewis, Catrin E; Linnstaedt, Sarah D; Lori, Adriana; Lugonja, Bozo; Luykx, Jurjen J; Lyons, Michael J; Maples-Keller, Jessica; Marmar, Charles; Martin, Alicia R; Martin, Nicholas G; Maurer, Douglas; Mavissakalian, Matig R; McFarlane, Alexander; McGlinchey, Regina E; McLaughlin, Katie A; McLean, Samuel A; McLeay, Sarah; Mehta, Divya; Milberg, William P; Miller, Mark W; Morey, Rajendra A; Morris, Charles Phillip; Mors, Ole; Mortensen, Preben B; Neale, Benjamin M; Nelson, Elliot C; Nordentoft, Merete; Norman, Sonya B; O'Donnell, Meaghan; Orcutt, Holly K; Panizzon, Matthew S; Peters, Edward S; Peterson, Alan L; Peverill, Matthew; Pietrzak, Robert H; Polusny, Melissa A; Rice, John P; Ripke, Stephan; Risbrough, Victoria B; Roberts, Andrea L; Rothbaum, Alex O; Rothbaum, Barbara O; Roy-Byrne, Peter; Ruggiero, Ken; Rung, Ariane; Rutten, Bart PF; Saccone, Nancy L; Sanchez, Sixto E; Schijven, Dick; Seedat, Soraya; Seligowski, Antonia V; Seng, Julia S; Sheerin, Christina M; Silove, Derrick; Smith, Alicia K; Smoller, Jordan W; Sponheim, Scott R; Stein, Dan J; Stevens, Jennifer S; Sumner, Jennifer A; Teicher, Martin H; Thompson, Wesley K; Trapido, Edward; Uddin, Monica; Ursano, Robert J; van den Heuvel, Leigh Luella; Van Hooff, Miranda; Vermetten, Eric; Vinkers, Christiaan H; Voisey, Joanne; Wang, Yunpeng; Wang, Zhewu; Werge, Thomas; Williams, Michelle A; Williamson, Douglas E; Winternitz, Sherry; Wolf, Christiane; Wolf, Erika J; Wolff, Jonathan D; Yehuda, Rachel; Young, Ross McD; Young, Keith A; Zhao, Hongyu; Zoellner, Lori A; Liberzon, Israel; Ressler, Kerry J; Haas, Magali; Koenen, Karestan CThe risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.Item Open Access Joint eQTL assessment of whole blood and dura mater tissue from individuals with Chiari type I malformation.(BMC Genomics, 2015-01-22) Lock, Eric F; Soldano, Karen L; Garrett, Melanie E; Cope, Heidi; Markunas, Christina A; Fuchs, Herbert; Grant, Gerald; Dunson, David B; Gregory, Simon G; Ashley-Koch, Allison EBACKGROUND: Expression quantitative trait loci (eQTL) play an important role in the regulation of gene expression. Gene expression levels and eQTLs are expected to vary from tissue to tissue, and therefore multi-tissue analyses are necessary to fully understand complex genetic conditions in humans. Dura mater tissue likely interacts with cranial bone growth and thus may play a role in the etiology of Chiari Type I Malformation (CMI) and related conditions, but it is often inaccessible and its gene expression has not been well studied. A genetic basis to CMI has been established; however, the specific genetic risk factors are not well characterized. RESULTS: We present an assessment of eQTLs for whole blood and dura mater tissue from individuals with CMI. A joint-tissue analysis identified 239 eQTLs in either dura or blood, with 79% of these eQTLs shared by both tissues. Several identified eQTLs were novel and these implicate genes involved in bone development (IPO8, XYLT1, and PRKAR1A), and ribosomal pathways related to marrow and bone dysfunction, as potential candidates in the development of CMI. CONCLUSIONS: Despite strong overall heterogeneity in expression levels between blood and dura, the majority of cis-eQTLs are shared by both tissues. The power to detect shared eQTLs was improved by using an integrative statistical approach. The identified tissue-specific and shared eQTLs provide new insight into the genetic basis for CMI and related conditions.Item Open Access Large epigenome-wide association study identifies multiple novel differentially methylated CpG sites associated with suicidal thoughts and behaviors in veterans.(Frontiers in psychiatry, 2023-01) Kimbrel, Nathan A; Garrett, Melanie E; Evans, Mariah K; Mellows, Clara; Dennis, Michelle F; Hair, Lauren P; Hauser, Michael A; VA Mid-Atlantic MIRECC Workgroup; Ashley-Koch, Allison E; Beckham, Jean CIntroduction
The U.S. suicide mortality rate has steadily increased during the past two decades, particularly among military veterans; however, the epigenetic basis of suicidal thoughts and behaviors (STB) remains largely unknown.Methods
To address this issue, we conducted an epigenome-wide association study of DNA methylation (DNAm) of peripheral blood samples obtained from 2,712 U.S. military veterans.Results
Three DNAm probes were significantly associated with suicide attempts, surpassing the multiple testing threshold (FDR q-value <0.05), including cg13301722 on chromosome 7, which lies between the genes SLC4A2 and CDK5; cg04724646 in PDE3A; and cg04999352 in RARRES3. cg13301722 was also found to be differentially methylated in the cerebral cortex of suicide decedents in a publicly-available dataset (p = 0.03). Trait enrichment analysis revealed that the CpG sites most strongly associated with STB in the present sample were also associated with smoking, alcohol consumption, maternal smoking, and maternal alcohol consumption, whereas pathway enrichment analysis revealed significant associations with circadian rhythm, adherens junction, insulin secretion, and RAP-1 signaling, each of which was recently associated with suicide attempts in a large, independent genome-wide association study of suicide attempts of veterans.Discussion
Taken together, the present findings suggest that SLC4A2, CDK5, PDE3A, and RARRES3 may play a role in STB. CDK5, a member of the cyclin-dependent kinase family that is highly expressed in the brain and essential for learning and memory, appears to be a particularly promising candidate worthy of future study; however, additional work is still needed to replicate these finding in independent samples.Item Open Access Lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) lncRNA differentially regulates gene and protein expression, signaling and morphology of human ocular cells.(Human molecular genetics, 2023-10) Schmitt, Heather M; Hake, Kristyn M; Perkumas, Kristin M; Lê, Brandon M; Suarez, Maria F; De Ieso, Michael L; Rahman, Rashad S; Johnson, William M; Gomez-Caraballo, María; Ashley-Koch, Allison E; Hauser, Michael A; Stamer, W DanielPseudoexfoliation glaucoma (PEXG) is characterized by dysregulated extracellular matrix (ECM) homeostasis that disrupts conventional outflow function and increases intraocular pressure (IOP). Prolonged IOP elevation results in optic nerve head damage and vision loss. Uniquely, PEXG is a form of open angle glaucoma that has variable penetrance, is difficult to treat and does not respond well to common IOP-lowering pharmaceuticals. Therefore, understanding modulators of disease severity will aid in targeted therapies for PEXG. Genome-wide association studies have identified polymorphisms in the long non-coding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) as a risk factor for PEXG. Risk alleles, oxidative stress and mechanical stretch all alter LOXL1-AS1 expression. As a long non-coding RNA, LOXL1-AS1 binds hnRNPL and regulates global gene expression. In this study, we focus on the role of LOXL1-AS1 in the ocular cells (trabecular meshwork and Schlemm's canal) that regulate IOP. We show that selective knockdown of LOXL1-AS1 leads to cell-type-specific changes in gene expression, ECM homeostasis, signaling and morphology. These results implicate LOXL1-AS1 as a modulator of cellular homeostasis, altering cell contractility and ECM turnover, both of which are well-known contributors to PEXG. These findings support LOXL1-AS1 as a key target for modifying the disease.Item Open Access Posttraumatic stress disorder, trauma, and accelerated biological aging among post-9/11 veterans.(Translational psychiatry, 2024-01) Bourassa, Kyle J; Garrett, Melanie E; Caspi, Avshalom; Dennis, Michelle; Hall, Katherine S; Moffitt, Terrie E; Taylor, Gregory A; VA Mid Atlantic MIRECC Workgroup; Ashley-Koch, Allison E; Beckham, Jean C; Kimbrel, Nathan APeople who experience trauma and develop posttraumatic stress disorder (PTSD) are at increased risk for poor health. One mechanism that could explain this risk is accelerated biological aging, which is associated with the accumulation of chronic diseases, disability, and premature mortality. Using data from 2309 post-9/11 United States military veterans who participated in the VISN 6 MIRECC's Post-Deployment Mental Health Study, we tested whether PTSD and trauma exposure were associated with accelerated rate of biological aging, assessed using a validated DNA methylation (DNAm) measure of epigenetic aging-DunedinPACE. Veterans with current PTSD were aging faster than those who did not have current PTSD, β = 0.18, 95% CI [0.11, 0.27], p < .001. This effect represented an additional 0.4 months of biological aging each year. Veterans were also aging faster if they reported more PTSD symptoms, β = 0.13, 95% CI [0.09, 0.16], p < 0.001, or higher levels of trauma exposure, β = 0.09, 95% CI [0.05, 0.13], p < 0.001. Notably, veterans with past PTSD were aging more slowly than those with current PTSD, β = -0.21, 95% CI [-0.35, -0.07], p = .003. All reported results accounted for age, gender, self-reported race/ethnicity, and education, and remained when controlling for smoking. Our findings suggest that an accelerated rate of biological aging could help explain how PTSD contributes to poor health and highlights the potential benefits of providing efficacious treatment to populations at increased risk of trauma and PTSD.Item Open Access Stratified whole genome linkage analysis of Chiari type I malformation implicates known Klippel-Feil syndrome genes as putative disease candidates.(PloS one, 2013-01) Markunas, Christina A; Soldano, Karen; Dunlap, Kaitlyn; Cope, Heidi; Asiimwe, Edgar; Stajich, Jeffrey; Enterline, David; Grant, Gerald; Fuchs, Herbert; Gregory, Simon G; Ashley-Koch, Allison EChiari Type I Malformation (CMI) is characterized by displacement of the cerebellar tonsils below the base of the skull, resulting in significant neurologic morbidity. Although multiple lines of evidence support a genetic contribution to disease, no genes have been identified. We therefore conducted the largest whole genome linkage screen to date using 367 individuals from 66 families with at least two individuals presenting with nonsyndromic CMI with or without syringomyelia. Initial findings across all 66 families showed minimal evidence for linkage due to suspected genetic heterogeneity. In order to improve power to localize susceptibility genes, stratified linkage analyses were performed using clinical criteria to differentiate families based on etiologic factors. Families were stratified on the presence or absence of clinical features associated with connective tissue disorders (CTDs) since CMI and CTDs frequently co-occur and it has been proposed that CMI patients with CTDs represent a distinct class of patients with a different underlying disease mechanism. Stratified linkage analyses resulted in a marked increase in evidence of linkage to multiple genomic regions consistent with reduced genetic heterogeneity. Of particular interest were two regions (Chr8, Max LOD = 3.04; Chr12, Max LOD = 2.09) identified within the subset of "CTD-negative" families, both of which harbor growth differentiation factors (GDF6, GDF3) implicated in the development of Klippel-Feil syndrome (KFS). Interestingly, roughly 3-5% of CMI patients are diagnosed with KFS. In order to investigate the possibility that CMI and KFS are allelic, GDF3 and GDF6 were sequenced leading to the identification of a previously known KFS missense mutation and potential regulatory variants in GDF6. This study has demonstrated the value of reducing genetic heterogeneity by clinical stratification implicating several convincing biological candidates and further supporting the hypothesis that multiple, distinct mechanisms are responsible for CMI.Item Open Access The Omic Modifiers of Morbidity and Mortality in Sickle Cell Disease(2023) Lê, Brandon MinhSickle cell disease (SCD) is a human genetic disorder caused by a mutation in the hemoglobin beta gene, causing sickling of red blood cells (RBCs) under hypoxic conditions, vaso-occlusion and adherence to other cells and endothelium, and downstream cellular and organ damage, ultimately resulting in higher morbidity and mortality relative to healthy people. While SCD is a Mendelian disorder defined by mutation in a single gene, the clinical presentation of people with SCD is highly heterogeneous. Typical SCD complications like acute chest syndrome (ACS), pain crises, and strokes are common but not universal, the range of severity of these outcomes is highly variable (higher morbidity, but not in all people with SCD), and life expectancy is lower on average (United States: 54 years). While the hemoglobin beta locus has been comprehensively studied as the origin of SCD, study on the other genetic and “-omic” factors that modify the disease presentation are less understood. Investigation into these omic modifiers of SCD may provide insight into many potential therapeutic targets that can greatly increase the quality of life and lifespan of people with SCD.
To advance knowledge of omic modifiers of SCD, multiple approaches combining large-scale biological datasets with new methodologies and toolkits have been used to assess SCD progression across multiple facets. Whereas prior research on SCD modifiers has been performed on smaller datasets with limited genomic data, we have performed genome-wide analyses with whole-genome sequences across much larger cohorts of people with SCD. In addition, other omic datasets are addressed. Variability in methylation at CpG sites are utilized to provide measurements of biological aging in SCD that differs from normal, healthy biological aging.
Across these analyses, a more comprehensive assessment of the omic modifiers of morbidity and mortality in SCD is achieved. Further work will serve to validate the results of these analyses and recommend omic variants for investigation in therapeutic interventions.
Item Open Access The PsychENCODE project.(Nat Neurosci, 2015-12) PsychENCODE Consortium; Akbarian, Schahram; Liu, Chunyu; Knowles, James A; Vaccarino, Flora M; Farnham, Peggy J; Crawford, Gregory E; Jaffe, Andrew E; Pinto, Dalila; Dracheva, Stella; Geschwind, Daniel H; Mill, Jonathan; Nairn, Angus C; Abyzov, Alexej; Pochareddy, Sirisha; Prabhakar, Shyam; Weissman, Sherman; Sullivan, Patrick F; State, Matthew W; Weng, Zhiping; Peters, Mette A; White, Kevin P; Gerstein, Mark B; Amiri, Anahita; Armoskus, Chris; Ashley-Koch, Allison E; Bae, Taejeong; Beckel-Mitchener, Andrea; Berman, Benjamin P; Coetzee, Gerhard A; Coppola, Gianfilippo; Francoeur, Nancy; Fromer, Menachem; Gao, Robert; Grennan, Kay; Herstein, Jennifer; Kavanagh, David H; Ivanov, Nikolay A; Jiang, Yan; Kitchen, Robert R; Kozlenkov, Alexey; Kundakovic, Marija; Li, Mingfeng; Li, Zhen; Liu, Shuang; Mangravite, Lara M; Mangravite, Lara M; Mattei, Eugenio; Markenscoff-Papadimitriou, Eirene; Navarro, Fábio CP; North, Nicole; Omberg, Larsson; Panchision, David; Parikshak, Neelroop; Poschmann, Jeremie; Price, Amanda J; Purcaro, Michael; Reddy, Timothy E; Roussos, Panos; Schreiner, Shannon; Scuderi, Soraya; Sebra, Robert; Shibata, Mikihito; Shieh, Annie W; Skarica, Mario; Sun, Wenjie; Swarup, Vivek; Thomas, Amber; Tsuji, Junko; van Bakel, Harm; Wang, Daifeng; Wang, Yongjun; Wang, Kai; Werling, Donna M; Willsey, A Jeremy; Witt, Heather; Won, Hyejung; Wong, Chloe CY; Wray, Gregory A; Wu, Emily Y; Xu, Xuming; Yao, Lijing; Senthil, Geetha; Lehner, Thomas; Sklar, Pamela; Sestan, Nenad