Browsing by Author "Bain, James R"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
Item Open Access A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels.(Scientific reports, 2021-07-05) van Vliet, Stephan; Bain, James R; Muehlbauer, Michael J; Provenza, Frederick D; Kronberg, Scott L; Pieper, Carl F; Huffman, Kim MA new generation of plant-based meat alternatives-formulated to mimic the taste and nutritional composition of red meat-have attracted considerable consumer interest, research attention, and media coverage. This has raised questions of whether plant-based meat alternatives represent proper nutritional replacements to animal meat. The goal of our study was to use untargeted metabolomics to provide an in-depth comparison of the metabolite profiles a popular plant-based meat alternative (n = 18) and grass-fed ground beef (n = 18) matched for serving size (113 g) and fat content (14 g). Despite apparent similarities based on Nutrition Facts panels, our metabolomics analysis found that metabolite abundances between the plant-based meat alternative and grass-fed ground beef differed by 90% (171 out of 190 profiled metabolites; false discovery rate adjusted p < 0.05). Several metabolites were found either exclusively (22 metabolites) or in greater quantities in beef (51 metabolites) (all, p < 0.05). Nutrients such as docosahexaenoic acid (ω-3), niacinamide (vitamin B3), glucosamine, hydroxyproline and the anti-oxidants allantoin, anserine, cysteamine, spermine, and squalene were amongst those only found in beef. Several other metabolites were found exclusively (31 metabolites) or in greater quantities (67 metabolites) in the plant-based meat alternative (all, p < 0.05). Ascorbate (vitamin C), phytosterols, and several phenolic anti-oxidants such as loganin, sulfurol, syringic acid, tyrosol, and vanillic acid were amongst those only found in the plant-based meat alternative. Large differences in metabolites within various nutrient classes (e.g., amino acids, dipeptides, vitamins, phenols, tocopherols, and fatty acids) with physiological, anti-inflammatory, and/or immunomodulatory roles indicate that these products should not be viewed as truly nutritionally interchangeable, but could be viewed as complementary in terms of provided nutrients. The new information we provide is important for making informed decisions by consumers and health professionals. It cannot be determined from our data if either source is healthier to consume.Item Open Access A Testosterone Metabolite 19-Hydroxyandrostenedione Induces Neuroendocrine Trans-Differentiation of Prostate Cancer Cells via an Ectopic Olfactory Receptor.(Frontiers in oncology, 2018-01) Abaffy, Tatjana; Bain, James R; Muehlbauer, Michael J; Spasojevic, Ivan; Lodha, Shweta; Bruguera, Elisa; O'Neal, Sara K; Kim, So Young; Matsunami, HiroakiOlfactory receptor OR51E2, also known as a Prostate Specific G-Protein Receptor, is highly expressed in prostate cancer but its function is not well understood. Through in silico and in vitro analyses, we identified 24 agonists and 1 antagonist for this receptor. We detected that agonist 19-hydroxyandrostenedione, a product of the aromatase reaction, is endogenously produced upon receptor activation. We characterized the effects of receptor activation on metabolism using a prostate cancer cell line and demonstrated decreased intracellular anabolic signals and cell viability, induction of cell cycle arrest, and increased expression of neuronal markers. Furthermore, upregulation of neuron-specific enolase by agonist treatment was abolished in OR51E2-KO cells. The results of our study suggest that OR51E2 activation results in neuroendocrine trans-differentiation. These findings reveal a new role for OR51E2 and establish this G-protein coupled receptor as a novel therapeutic target in the treatment of prostate cancer.Item Open Access Age-Related Adverse Inflammatory and Metabolic Changes Begin Early in Adulthood.(The journals of gerontology. Series A, Biological sciences and medical sciences, 2018-05-22) Parker, Daniel; Sloane, Richard; Pieper, Carl F; Hall, Katherine S; Kraus, Virginia B; Kraus, William E; Huebner, Janet L; Ilkayeva, Olga R; Bain, James R; Newby, L Kristin; Cohen, Harvey Jay; Morey, Miriam CAging is characterized by deleterious immune and metabolic changes, but the onset of these changes is unknown. We measured immune and metabolic biomarkers in adults beginning at age 30. To our knowledge, this is the first study to evaluate these biomarkers in adults aged 30 to over 80. Biomarkers were quantified in 961 adults. Tumor necrosis factor alpha (TNF-α), tumor necrosis factor receptor I (TNFR-I), tumor necrosis factor receptor II (TNFR-II), interleukin (IL)-2, IL-6, VCAM-I, D-Dimer, G-CSF, regulated on activation, normal T cell expressed and secreted (RANTES), matrix metalloproteinase-3 (MMP-3), adiponectin, and paraoxonase activity were measured by ELISA. Acylcarnitines and amino acids (AAs) were measured by mass spectrometry and reduced to a single factor using principal components analysis (PCA). Glycine was analyzed separately. The relationship between age and biomarkers was analyzed by linear regression with sex, race, and body mass index (BMI) as covariates. Age was positively correlated with TNF-α, TNFR-I, TNFR-II, IL-6, IL-2, VCAM-1, D-Dimer, MMP-3, adiponectin, acylcarnitines, and AAs. Age was negative correlated with G-CSF, RANTES, and paraoxonase activity. BMI was significant for all biomarkers except IL-2, VCAM-1, RANTES, paraoxonase activity, and the AA factor. Excluding MMP-3, greater BMI was associated with potentially adverse changes in biomarker concentrations. Age-related changes in immune and metabolic biomarkers, known to be associated with poor outcomes in older adults, begin as early as the thirties.Item Open Access APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease.(The Journal of clinical investigation, 2024-01) Datta, Somenath; Antonio, Brett M; Zahler, Nathan H; Theile, Jonathan W; Krafte, Doug; Zhang, Hengtao; Rosenberg, Paul B; Chaves, Alec B; Muoio, Deborah M; Zhang, Guofang; Silas, Daniel; Li, Guojie; Soldano, Karen; Nystrom, Sarah; Ferreira, Davis; Miller, Sara E; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga; Becker, Thomas C; Hohmeier, Hans-Ewald; Newgard, Christopher B; Olabisi, Opeyemi ATwo coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.Item Open Access Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events.(Circ Cardiovasc Genet, 2010-04) Shah, Svati H; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Crosslin, David R; Haynes, Carol; Dungan, Jennifer; Newby, L Kristin; Hauser, Elizabeth R; Ginsburg, Geoffrey S; Newgard, Christopher B; Kraus, William EBACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.Item Open Access Caloric restriction alters the metabolic response to a mixed-meal: results from a randomized, controlled trial.(PLoS One, 2012) Huffman, Kim M; Redman, Leanne M; Landerman, Lawrence R; Pieper, Carl F; Stevens, Robert D; Muehlbauer, Michael J; Wenner, Brett R; Bain, James R; Kraus, Virginia B; Newgard, Christopher B; Ravussin, Eric; Kraus, William EOBJECTIVES: To determine if caloric restriction (CR) would cause changes in plasma metabolic intermediates in response to a mixed meal, suggestive of changes in the capacity to adapt fuel oxidation to fuel availability or metabolic flexibility, and to determine how any such changes relate to insulin sensitivity (S(I)). METHODS: Forty-six volunteers were randomized to a weight maintenance diet (Control), 25% CR, or 12.5% CR plus 12.5% energy deficit from structured aerobic exercise (CR+EX), or a liquid calorie diet (890 kcal/d until 15% reduction in body weight)for six months. Fasting and postprandial plasma samples were obtained at baseline, three, and six months. A targeted mass spectrometry-based platform was used to measure concentrations of individual free fatty acids (FFA), amino acids (AA), and acylcarnitines (AC). S(I) was measured with an intravenous glucose tolerance test. RESULTS: Over three and six months, there were significantly larger differences in fasting-to-postprandial (FPP) concentrations of medium and long chain AC (byproducts of FA oxidation) in the CR relative to Control and a tendency for the same in CR+EX (CR-3 month P = 0.02; CR-6 month P = 0.002; CR+EX-3 month P = 0.09; CR+EX-6 month P = 0.08). After three months of CR, there was a trend towards a larger difference in FPP FFA concentrations (P = 0.07; CR-3 month P = 0.08). Time-varying differences in FPP concentrations of AC and AA were independently related to time-varying S(I) (P<0.05 for both). CONCLUSIONS: Based on changes in intermediates of FA oxidation following a food challenge, CR imparted improvements in metabolic flexibility that correlated with improvements in S(I). TRIAL REGISTRATION: ClinicalTrials.gov NCT00099151.Item Open Access Combined Inflammation and Metabolism Biomarker Indices of Robust and Impaired Physical Function in Older Adults.(Journal of the American Geriatrics Society, 2018-05-08) Zuo, Xintong; Luciano, Alison; Pieper, Carl F; Bain, James R; Kraus, Virginia B; Kraus, William E; Morey, Miriam C; Cohen, Harvey JTo determine whether combinations of inflammatory markers are related to physical function.secondary analysis of baseline of three observational studies of community-dwelling older adults MEASUREMENTS: The baseline data from 3 cohorts of older adults with different health and disease status were employed. Twenty markers of inflammation and metabolism were individually assessed for correlation with usual gait speed and were separated into robust and impairment quartiles. For the robustness and impairment indices, individual markers were selected using step-wise regression over bootstrapping iterations, and regression coefficients were estimated for the markers individually and collectively as an additive score.We developed a robustness index involving 6 markers and an impairment index involving 8 markers corresponding positively and negatively with gait speed. Two markers, glycine and tumor necrosis factor receptor 1 (TNFR1), appeared only in the robustness index, and TNFR2; regulated on activation, normal T-cell expressed and secreted; the amino acid factor; and matrix metallopeptidase 3; appeared only in the impairment index.Indices of biomarkers were associated with robust and impaired physical performance but differ, in composition suggesting potential biological differences that may contribute to robustness and impairment.Item Open Access Dietary Patterns among Asian Indians Living in the United States Have Distinct Metabolomic Profiles That Are Associated with Cardiometabolic Risk.(The Journal of nutrition, 2018-07) Bhupathiraju, Shilpa N; Guasch-Ferré, Marta; Gadgil, Meghana D; Newgard, Christopher B; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga R; Scholtens, Denise M; Hu, Frank B; Kanaya, Alka M; Kandula, Namratha RRecent studies, primarily in non-Hispanic whites, suggest that dietary patterns have distinct metabolomic signatures that may influence disease risk. However, evidence in South Asians, a group with unique dietary patterns and a high prevalence of cardiometabolic risk, is lacking.We investigated the metabolomic profiles associated with 2 distinct dietary patterns among a sample of Asian Indians living in the United States. We also examined the cross-sectional associations between metabolomic profiles and cardiometabolic risk markers.We used cross-sectional data from 145 Asian Indians, aged 45-79 y, in the Metabolic Syndrome and Atherosclerosis in South Asians Living in America (MASALA) pilot study. Metabolomic profiles were measured from fasting serum samples. Usual diet was assessed by using a validated food-frequency questionnaire. We used principal components analysis to derive dietary and metabolomic patterns. We used adjusted general linear regression models to examine associations between dietary patterns, individual food groups, metabolite patterns, and cardiometabolic risk markers.We observed 2 major principal components or metabolite clusters, the first comprised primarily of medium- to long-chain acylcarnitines (metabolite pattern 1) and the second characterized by branched-chain amino acids, aromatic amino acids, and short-chain acylcarnitines (metabolite pattern 2). A "Western/nonvegetarian" pattern was significantly and positively associated with metabolite pattern 2 (all participants: β ± SE = 0.180 ± 0.090, P = 0.05; participants without type 2 diabetes: β ± SE = 0.323 ± 0.090, P = 0.0005). In all participants, higher scores on metabolite pattern 2 were adversely associated with measures of glycemia (fasting insulin: β ± SE = 2.91 ± 1.29, P = 0.03; 2-h insulin: β ± SE = 22.1 ± 10.3, P = 0.03; homeostasis model assessment of insulin resistance: β ± SE = 0.94 ± 0.42, P = 0.03), total adiponectin (β ± SE = -1.46 ± 0.47, P = 0.002), lipids (total cholesterol: β ± SE = 7.51 ± 3.45, P = 0.03; triglycerides: β ± SE = 14.4 ± 6.67, P = 0.03), and a radiographic measure of hepatic fat (liver-to-spleen attenuation ratio: β ± SE = -0.83 ± 0.42, P = 0.05).Our findings suggest that a "Western/nonvegetarian" dietary pattern is associated with a metabolomic profile that is related to an adverse cardiometabolic profile in Asian Indians. Public health efforts to reduce cardiometabolic disease burden in this high-risk group should focus on consuming a healthy plant-based diet.Item Open Access Ecological memory of prior nutrient exposure in the human gut microbiome.(The ISME journal, 2022-07-23) Letourneau, Jeffrey; Holmes, Zachary C; Dallow, Eric P; Durand, Heather K; Jiang, Sharon; Carrion, Verónica M; Gupta, Savita K; Mincey, Adam C; Muehlbauer, Michael J; Bain, James R; David, Lawrence AMany ecosystems have been shown to retain a memory of past conditions, which in turn affects how they respond to future stimuli. In microbial ecosystems, community disturbance has been associated with lasting impacts on microbiome structure. However, whether microbial communities alter their response to repeated stimulus remains incompletely understood. Using the human gut microbiome as a model, we show that bacterial communities retain an "ecological memory" of past carbohydrate exposures. Memory of the prebiotic inulin was encoded within a day of supplementation among a cohort of human study participants. Using in vitro gut microbial models, we demonstrated that the strength of ecological memory scales with nutrient dose and persists for days. We found evidence that memory is seeded by transcriptional changes among primary degraders of inulin within hours of nutrient exposure, and that subsequent changes in the activity and abundance of these taxa are sufficient to enhance overall community nutrient metabolism. We also observed that ecological memory of one carbohydrate species impacts microbiome response to other carbohydrates, and that an individual's habitual exposure to dietary fiber was associated with their gut microbiome's efficiency at digesting inulin. Together, these findings suggest that the human gut microbiome's metabolic potential reflects dietary exposures over preceding days and changes within hours of exposure to a novel nutrient. The dynamics of this ecological memory also highlight the potential for intra-individual microbiome variation to affect the design and interpretation of interventions involving the gut microbiome.Item Open Access Exercise-induced changes in metabolic intermediates, hormones, and inflammatory markers associated with improvements in insulin sensitivity.(Diabetes Care, 2011-01) Huffman, Kim M; Slentz, Cris A; Bateman, Lori A; Thompson, Dana; Muehlbauer, Michael J; Bain, James R; Stevens, Robert D; Wenner, Brett R; Kraus, Virginia Byers; Newgard, Christopher B; Kraus, William EOBJECTIVE: To understand relationships between exercise training-mediated improvements in insulin sensitivity (S(I)) and changes in circulating concentrations of metabolic intermediates, hormones, and inflammatory mediators. RESEARCH DESIGN AND METHODS: Targeted mass spectrometry and enzyme-linked immunosorbent assays were used to quantify metabolic intermediates, hormones, and inflammatory markers at baseline, after 6 months of exercise training, and 2 weeks after exercise training cessation (n = 53). A principal components analysis (PCA) strategy was used to relate changes in these intermediates to changes in S(I). RESULTS: PCA reduced the number of intermediates from 90 to 24 factors composed of biologically related components. With exercise training, improvements in S(I) were associated with reductions in by-products of fatty acid oxidation and increases in glycine and proline (P < 0.05, R² = 0.59); these relationships were retained 15 days after cessation of exercise training (P < 0.05, R² = 0.34). CONCLUSIONS: These observations support prior observations in animal models that exercise training promotes more efficient mitochondrial β-oxidation and challenges current hypotheses regarding exercise training and glycine metabolism.Item Open Access Metabolic Changes with Base-Loading in CKD.(Clinical journal of the American Society of Nephrology : CJASN, 2018-06-22) Scialla, Julia J; Scialla, Julia J; Brown, Landon; Gurley, Susan; Corcoran, David L; Bain, James R; Muehlbauer, Michael J; O'Neal, Sara K; M O'Connell, Thomas; Wolf, Myles; Melamed, Michal L; Hostetter, Thomas H; Abramowitz, Matthew KItem Open Access Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure.(J Am Heart Assoc, 2016-07-29) Hunter, Wynn G; Kelly, Jacob P; McGarrah, Robert W; Khouri, Michel G; Craig, Damian; Haynes, Carol; Ilkayeva, Olga; Stevens, Robert D; Bain, James R; Muehlbauer, Michael J; Newgard, Christopher B; Felker, G Michael; Hernandez, Adrian F; Velazquez, Eric J; Kraus, William E; Shah, Svati HBACKGROUND: Metabolic impairment is an important contributor to heart failure (HF) pathogenesis and progression. Dysregulated metabolic pathways remain poorly characterized in patients with HF and preserved ejection fraction (HFpEF). We sought to determine metabolic abnormalities in HFpEF and identify pathways differentially altered in HFpEF versus HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS: We identified HFpEF cases, HFrEF controls, and no-HF controls from the CATHGEN study of sequential patients undergoing cardiac catheterization. HFpEF cases (N=282) were defined by left ventricular ejection fraction (LVEF) ≥45%, diastolic dysfunction grade ≥1, and history of HF; HFrEF controls (N=279) were defined similarly, except for having LVEF <45%. No-HF controls (N=191) had LVEF ≥45%, normal diastolic function, and no HF diagnosis. Targeted mass spectrometry and enzymatic assays were used to quantify 63 metabolites in fasting plasma. Principal components analysis reduced the 63 metabolites to uncorrelated factors, which were compared across groups using ANCOVA. In basic and fully adjusted models, long-chain acylcarnitine factor levels differed significantly across groups (P<0.0001) and were greater in HFrEF than HFpEF (P=0.0004), both of which were greater than no-HF controls. We confirmed these findings in sensitivity analyses using stricter inclusion criteria, alternative LVEF thresholds, and adjustment for insulin resistance. CONCLUSIONS: We identified novel circulating metabolites reflecting impaired or dysregulated fatty acid oxidation that are independently associated with HF and differentially elevated in HFpEF and HFrEF. These results elucidate a specific metabolic pathway in HF and suggest a shared metabolic mechanism in HF along the LVEF spectrum.Item Open Access Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.(PLoS Genet, 2015-11) Kraus, William E; Muoio, Deborah M; Stevens, Robert; Craig, Damian; Bain, James R; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R; Gregory, Simon G; Newgard, Christopher B; Shah, Svati HLevels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.Item Open Access Tryptophan Metabolism and Neurodegeneration: Longitudinal Associations of Kynurenine Pathway Metabolites with Cognitive Performance and Plasma Alzheimer's Disease and Related Dementias Biomarkers in the Duke Physical Performance Across the LifeSpan Study.(Journal of Alzheimer's disease : JAD, 2022-12) Parker, Daniel C; Kraus, William E; Whitson, Heather E; Kraus, Virginia B; Smith, Patrick J; Cohen, Harvey Jay; Pieper, Carl F; Faldowski, Richard A; Hall, Katherine S; Huebner, Janet L; Ilkayeva, Olga R; Bain, James R; Newby, L Kristin; Huffman, Kim MBackground
The kynurenine pathway (KP) comprises a family of tryptophan-derived metabolites that some studies have reported are associated with poorer cognitive performance and an increased risk of Alzheimer's disease and related dementias (ADRD).Objective
The objective of this study was to determine the associations of plasma KP metabolites (kynurenine [KYN], kynurenic acid [KA], and tryptophan [TRP]) with a panel of plasma ADRD biomarkers (Aβ42/ β40 ratio, pTau-181, glial fibrillary acidic protein [GFAP], and neurofilament light [NfL]) and cognitive performance in a subset of older adults drawn from the Duke Physical Performance Across the LifeSpan (PALS) study.Methods
The Montreal Cognitive Assessment (MoCA) was used to assess cognitive performance. We used multivariate multiple regression to evaluate associations of the KYN/TRP and KA/KYN ratios with MoCA score and plasma ADRD biomarkers at baseline and over two years (n = 301; Age = 74.8±8.7).Results
Over two years, an increasing KYN/TRP ratio was associated with increasing plasma concentrations of plasma p-Tau181 (β= 6.151; 95% CI [0.29, 12.01]; p = 0.040), GFAP (β= 11.12; 95% CI [1.73, 20.51]; p = 0.020), and NfL (β= 11.13; 95% CI [2.745, 19.52]; p = 0.009), but not MoCA score or the Aβ42/Aβ40 ratio. There were no significant associations of KA/KYN with MoCA score or plasma ADRD biomarkers.Conclusion
Our findings provide evidence that greater concentrations of KP metabolites are associated longitudinally over two years with greater biomarker evidence of neurofibrillary tau pathology (pTau-181), neuroinflammation (GFAP), and neurodegeneration (NfL), suggesting that dysregulated KP metabolism may play a role in ADRD pathogenesis.Item Open Access Type-2 diabetes, pancreatic amylin and neuronal metabolic remodeling in Alzheimer's Disease.(Mol Nutr Food Res, 2023-01-28) Leibold, Noah; Bain, James R; Despa, FlorinType-2 diabetes raises the risk for Alzheimer's disease (AD)-type dementia and the conversion from mild cognitive impairment to dementia, yet mechanisms connecting type-2 diabetes to AD remain largely unknown. Amylin, a pancreatic β-cell hormone co-secreted with insulin, participates in the central regulation of satiation, but also forms pancreatic amyloid in persons with type-2 diabetes and synergistically interacts with brain amyloid β (Aβ) pathology, in both sporadic and familial Alzheimer's disease (AD). Growing evidence from studies of tumor growth, together with early observations in skeletal muscle, indicate amylin as a potential trigger of cellular metabolic reprogramming. Because the blood, cerebrospinal fluid, and brain parenchyma in humans with AD have increased concentrations of amylin, amylin-mediated pathological processes in the brain may involve neuronal metabolic remodeling. We summarize recent progress in understanding the link between prediabetic hypersecretion of amylin and risk of neuronal metabolic remodeling and AD and suggest nutritional and medical effects of food constituents that might prevent and/or ameliorate amylin-mediated neuronal metabolic remodeling. This article is protected by copyright. All rights reserved.