Browsing by Author "Barouch, Dan H"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A genetically engineered, stem-cell-derived cellular vaccine.(Cell reports. Medicine, 2022-12) Cooper, Amanda; Sidaway, Adam; Chandrashekar, Abishek; Latta, Elizabeth; Chakraborty, Krishnendu; Yu, Jingyou; McMahan, Katherine; Giffin, Victoria; Manickam, Cordelia; Kroll, Kyle; Mosher, Matthew; Reeves, R Keith; Gam, Rihab; Arthofer, Elisa; Choudhry, Modassir; Henley, Tom; Barouch, Dan HDespite rapid clinical translation of COVID-19 vaccines in response to the global pandemic, an opportunity remains for vaccine technology innovation to address current limitations and meet challenges of inevitable future pandemics. We describe a universal vaccine cell (UVC) genetically engineered to mimic natural physiological immunity induced upon viral infection of host cells. Cells engineered to express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike as a representative viral antigen induce robust neutralizing antibodies in immunized non-human primates. Similar titers generated in this established non-human primate (NHP) model have translated into protective human neutralizing antibody levels in SARS-CoV-2-vaccinated individuals. Animals vaccinated with ancestral spike antigens and subsequently challenged with SARS-CoV-2 Delta variant in a heterologous challenge have an approximately 3 log decrease in viral subgenomic RNA in the lungs. This cellular vaccine is designed as a scalable cell line with a modular poly-antigenic payload, allowing for rapid, large-scale clinical manufacturing and use in an evolving viral variant environment.Item Open Access Contributions of Mamu-A*01 status and TRIM5 allele expression, but not CCL3L copy number variation, to the control of SIVmac251 replication in Indian-origin rhesus monkeys.(PLoS genetics, 2010) Lim, So-Yon; Chan, Tiffany; Gelman, Rebecca S; Whitney, James B; O'Brien, Kara L; Barouch, Dan H; Goldstein, David B; Haynes, Barton F; Letvin, Norman LCCL3 is a ligand for the HIV-1 co-receptor CCR5. There have recently been conflicting reports in the literature concerning whether CCL3-like gene (CCL3L) copy number variation (CNV) is associated with resistance to HIV-1 acquisition and with both viral load and disease progression following infection with HIV-1. An association has also been reported between CCL3L CNV and clinical sequelae of the simian immunodeficiency virus (SIV) infection in vivo in rhesus monkeys. The present study was initiated to explore the possibility of an association of CCL3L CNV with the control of virus replication and AIDS progression in a carefully defined cohort of SIVmac251-infected, Indian-origin rhesus monkeys. Although we demonstrated extensive variation in copy number of CCL3L in this cohort of monkeys, CCL3L CNV was not significantly associated with either peak or set-point plasma SIV RNA levels in these monkeys when MHC class I allele Mamu-A*01 was included in the models or progression to AIDS in these monkeys. With 66 monkeys in the study, there was adequate power for these tests if the correlation of CCL3L and either peak or set-point plasma SIV RNA levels was 0.34 or 0.36, respectively. These findings call into question the premise that CCL3L CNV is important in HIV/SIV pathogenesis.Item Open Access Delineation and Modulation of the Natural Killer Cell Transcriptome in Rhesus Macaques During ZIKV and SIV Infections.(Frontiers in cellular and infection microbiology, 2020-01) Aid, Malika; Ram, Daniel R; Bosinger, Steven E; Barouch, Dan H; Reeves, R KeithNatural killer (NK) cells are crucial regulators of antiviral and anti-tumor immune responses. Although in humans some NK cell transcriptional programs are relatively well-established, NK cell transcriptional networks in non-human primates (NHP) remain poorly delineated. Here we performed RNA-Seq experiments using purified NK cells from experimentally naïve rhesus macaques, providing the first transcriptional characterization of pure NK cells in any NHP species. This novel NK cell transcriptomic signature (NK RMtsig) overlaps with published human NK signatures, allowing us to identify new key signaling and transcription factor networks underlying NK cell function. Finally, we show that applying NK RMtsig to an unrelated rhesus macaque cohort infected with SIVmac251 or ZIKV can sensitively detect NK cell repertoire perturbations, thus confirming applicability of this approach. In sum, we propose this NHP NK cell signature will serve as a useful resource for future studies involving infection, disease or treatment modalities in NHP.Item Open Access Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques.(Nature, 2020-10) Mercado, Noe B; Zahn, Roland; Wegmann, Frank; Loos, Carolin; Chandrashekar, Abishek; Yu, Jingyou; Liu, Jinyan; Peter, Lauren; McMahan, Katherine; Tostanoski, Lisa H; He, Xuan; Martinez, David R; Rutten, Lucy; Bos, Rinke; van Manen, Danielle; Vellinga, Jort; Custers, Jerome; Langedijk, Johannes P; Kwaks, Ted; Bakkers, Mark JG; Zuijdgeest, David; Rosendahl Huber, Sietske K; Atyeo, Caroline; Fischinger, Stephanie; Burke, John S; Feldman, Jared; Hauser, Blake M; Caradonna, Timothy M; Bondzie, Esther A; Dagotto, Gabriel; Gebre, Makda S; Hoffman, Emily; Jacob-Dolan, Catherine; Kirilova, Marinela; Li, Zhenfeng; Lin, Zijin; Mahrokhian, Shant H; Maxfield, Lori F; Nampanya, Felix; Nityanandam, Ramya; Nkolola, Joseph P; Patel, Shivani; Ventura, John D; Verrington, Kaylee; Wan, Huahua; Pessaint, Laurent; Van Ry, Alex; Blade, Kelvin; Strasbaugh, Amanda; Cabus, Mehtap; Brown, Renita; Cook, Anthony; Zouantchangadou, Serge; Teow, Elyse; Andersen, Hanne; Lewis, Mark G; Cai, Yongfei; Chen, Bing; Schmidt, Aaron G; Reeves, R Keith; Baric, Ralph S; Lauffenburger, Douglas A; Alter, Galit; Stoffels, Paul; Mammen, Mathai; Van Hoof, Johan; Schuitemaker, Hanneke; Barouch, Dan HA safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.