Browsing by Author "Bejsovec, Amy"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Cytokinesis proteins Tum and Pav have a nuclear role in Wnt regulation.(J Cell Sci, 2010-07-01) Jones, Whitney M; Chao, Anna T; Zavortink, Michael; Saint, Robert; Bejsovec, AmyWg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.Item Open Access SoxNeuro and Shavenbaby act cooperatively to shape denticles in the embryonic epidermis of Drosophila.(Development, 2017-06-15) Rizzo, Nicholas P; Bejsovec, AmyDuring development, extracellular signals are integrated by cells to induce the transcriptional circuitry that controls morphogenesis. In the fly epidermis, Wingless (Wg)/Wnt signaling directs cells to produce either a distinctly shaped denticle or no denticle, resulting in a segmental pattern of denticle belts separated by smooth, or 'naked', cuticle. Naked cuticle results from Wg repression of shavenbaby (svb), which encodes a transcription factor required for denticle construction. We have discovered that although the svb promoter responds differentially to altered Wg levels, Svb alone cannot produce the morphological diversity of denticles found in wild-type belts. Instead, a second Wg-responsive transcription factor, SoxNeuro (SoxN), cooperates with Svb to shape the denticles. Co-expressing ectopic SoxN with svb rescued diverse denticle morphologies. Conversely, removing SoxN activity eliminated the residual denticles found in svb mutant embryos. Furthermore, several known Svb target genes are also activated by SoxN, and we have discovered two novel target genes of SoxN that are expressed in denticle-producing cells and that are regulated independently of Svb. We conclude that proper denticle morphogenesis requires transcriptional regulation by both SoxN and Svb.