Browsing by Author "Benedetti-Cecchi, Lisandro"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A fast-moving target: achieving marine conservation goals under shifting climate and policies.(Ecological applications : a publication of the Ecological Society of America, 2020-01) Rilov, Gil; Fraschetti, Simonetta; Gissi, Elena; Pipitone, Carlo; Badalamenti, Fabio; Tamburello, Laura; Menini, Elisabetta; Goriup, Paul; Mazaris, Antonios D; Garrabou, Joaquim; Benedetti-Cecchi, Lisandro; Danovaro, Roberto; Loiseau, Charles; Claudet, Joachim; Katsanevakis, SteliosIn the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.Item Open Access Climate drives the geography of marine consumption by changing predator communities.(Proceedings of the National Academy of Sciences of the United States of America, 2020-11) Whalen, Matthew A; Whippo, Ross DB; Stachowicz, John J; York, Paul H; Aiello, Erin; Alcoverro, Teresa; Altieri, Andrew H; Benedetti-Cecchi, Lisandro; Bertolini, Camilla; Bresch, Midoli; Bulleri, Fabio; Carnell, Paul E; Cimon, Stéphanie; Connolly, Rod M; Cusson, Mathieu; Diskin, Meredith S; D’Souza, Elrika; Flores, Augusto AV; Fodrie, F Joel; Galloway, Aaron WE; Gaskins, Leo C; Graham, Olivia J; Hanley, Torrance C; Henderson, Christopher J; Hereu, Clara M; Hessing-Lewis, Margot; Hovel, Kevin A; Hughes, Brent B; Hughes, A Randall; Hultgren, Kristin M; Jänes, Holger; Janiak, Dean S; Johnston, Lane N; Jorgensen, Pablo; Kelaher, Brendan P; Kruschel, Claudia; Lanham, Brendan S; Lee, Kun-Seop; Lefcheck, Jonathan S; Lozano-Álvarez, Enrique; Macreadie, Peter I; Monteith, Zachary L; O’Connor, Nessa E; Olds, Andrew D; O’Leary, Jennifer K; Patrick, Christopher J; Pino, Oscar; Poore, Alistair GB; Rasheed, Michael A; Raymond, Wendel W; Reiss, Katrin; Rhoades, O Kennedy; Robinson, Max T; Ross, Paige G; Rossi, Francesca; Schlacher, Thomas A; Seemann, Janina; Silliman, Brian R; Smee, Delbert L; Thiel, Martin; Unsworth, Richard KF; van Tussenbroek, Brigitta I; Vergés, Adriana; Yeager, Mallarie E; Yednock, Bree K; Ziegler, Shelby L; Duffy, J EmmettThe global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.