Browsing by Author "Bennett, Ilana J"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Diffusion tensor imaging of cerebral white matter integrity in cognitive aging.(Biochimica et biophysica acta, 2012-03) Madden, David J; Bennett, Ilana J; Burzynska, Agnieszka; Potter, Guy G; Chen, Nan-Kuei; Song, Allen WIn this article we review recent research on diffusion tensor imaging (DTI) of white matter (WM) integrity and the implications for age-related differences in cognition. Neurobiological mechanisms defined from DTI analyses suggest that a primary dimension of age-related decline in WM is a decline in the structural integrity of myelin, particularly in brain regions that myelinate later developmentally. Research integrating behavioral measures with DTI indicates that WM integrity supports the communication among cortical networks, particularly those involving executive function, perceptual speed, and memory (i.e., fluid cognition). In the absence of significant disease, age shares a substantial portion of the variance associated with the relation between WM integrity and fluid cognition. Current data are consistent with one model in which age-related decline in WM integrity contributes to a decreased efficiency of communication among networks for fluid cognitive abilities. Neurocognitive disorders for which older adults are at risk, such as depression, further modulate the relation between WM and cognition, in ways that are not as yet entirely clear. Developments in DTI technology are providing a new insight into both the neurobiological mechanisms of aging WM and the potential contribution of DTI to understanding functional measures of brain activity. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.Item Open Access Visual Acuity does not Moderate Effect Sizes of Higher-Level Cognitive Tasks.(Experimental aging research, 2016-05) Houston, James R; Bennett, Ilana J; Allen, Philip A; Madden, David JBackground/study context
Declining visual capacities in older adults have been posited as a driving force behind adult age differences in higher-order cognitive functions (e.g., the "common cause" hypothesis of Lindenberger & Baltes, 1994, Psychology and Aging, 9, 339-355). McGowan, Patterson, and Jordan (2013, Experimental Aging Research, 39, 70-79) also found that a surprisingly large number of published cognitive aging studies failed to include adequate measures of visual acuity. However, a recent meta-analysis of three studies (La Fleur and Salthouse, 2014, Psychonomic Bulletin & Review, 21, 1202-1208) failed to find evidence that visual acuity moderated or mediated age differences in higher-level cognitive processes. In order to provide a more extensive test of whether visual acuity moderates age differences in higher-level cognitive processes, we conducted a more extensive meta-analysis of topic.Methods
Using results from 456 studies, we calculated effect sizes for the main effect of age across four cognitive domains (attention, executive function, memory, and perception/language) separately for five levels of visual acuity criteria (no criteria, undisclosed criteria, self-reported acuity, 20/80-20/31, and 20/30 or better).Results
As expected, age had a significant effect on each cognitive domain. However, these age effects did not further differ as a function of visual acuity criteria.Conclusion
The current meta-analytic, cross-sectional results suggest that visual acuity is not significantly related to age group differences in higher-level cognitive performance-thereby replicating La Fleur and Salthouse (2014). Further efforts are needed to determine whether other measures of visual functioning (e.g., contrast sensitivity, luminance) affect age differences in cognitive functioning.Item Open Access White matter integrity correlates of implicit sequence learning in healthy aging.(Neurobiology of aging, 2011-12) Bennett, Ilana J; Madden, David J; Vaidya, Chandan J; Howard, James H; Howard, Darlene VPrevious research has identified subcortical (caudate, putamen, hippocampus) and cortical (dorsolateral prefrontal cortex, DLPFC; frontal motor areas) regions involved in implicit sequence learning, with mixed findings for whether these neural substrates differ with aging. The present study used diffusion tensor imaging (DTI) tractography to reconstruct white matter connections between the known gray matter substrates, and integrity of these tracts was related to learning in the alternating serial reaction time task (ASRT) in younger and healthy older adults. Both age groups showed significant sequence learning (better performance to predictable, frequently occurring vs. less frequent events), with an age-related difference in the late learning stage. Caudate-DLPFC and hippocampus-DLPFC tract integrity were related to ASRT sequence learning, and these brain-behavior relationships did not differ significantly between age groups. Additionally, age-related decreases in caudate-DLPFC tract integrity mediated age-related differences in late stage sequence learning. Together, these findings complement studies of gray matter substrates underlying implicit sequence learning, and provide evidence for similar white matter integrity-sequence learning relationships in younger and healthy older adults.