Browsing by Author "Bentley, Rex C"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A Therapeutic Antibody for Cancer, Derived from Single Human B Cells.(Cell Rep, 2016-05-17) Bushey, Ryan T; Moody, M Anthony; Nicely, Nathan L; Haynes, Barton F; Alam, S Munir; Keir, Stephen T; Bentley, Rex C; Roy Choudhury, Kingshuk; Gottlin, Elizabeth B; Campa, Michael J; Liao, Hua-Xin; Patz, Edward FSome patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. In an effort to translate these findings into a biologic therapy for cancer, we isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B cells obtained from patients with the antibody. The co-crystal structure of a CFH antibody-target complex shows a conformational change in the target relative to the native structure. This recombinant CFH antibody causes complement activation and release of anaphylatoxins, promotes CDC of tumor cell lines, and inhibits tumor growth in vivo. The isolation of anti-tumor antibodies derived from single human B cells represents an alternative paradigm in antibody drug discovery.Item Restricted Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer.(PLoS One, 2010-04-08) Schildkraut, Joellen M; Iversen, Edwin S; Wilson, Melanie A; Clyde, Merlise A; Moorman, Patricia G; Palmieri, Rachel T; Whitaker, Regina; Bentley, Rex C; Marks, Jeffrey R; Berchuck, AndrewBACKGROUND: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS), a population-based, case-control study. METHODS/PRINCIPAL FINDINGS: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs) for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio)(per allele) = 0.66; 95% credible interval (CI) = 0.44-1.00) and rs6005835 (median OR(per allele) = 0.69; 95% CI = 0.53-0.91) in CHEK2, rs2078486 (median OR(per allele) = 1.65; 95% CI = 1.21-2.25) and rs12951053 (median OR(per allele) = 1.65; 95% CI = 1.20-2.26) in TP53, rs411697 (median OR (rare homozygote) = 0.53; 95% CI = 0.35 - 0.79) in BACH1 and rs10131 (median OR( rare homozygote) = not estimable) in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study. CONCLUSIONS/SIGNIFICANCE: Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.Item Open Access Micro-CT imaging of breast tumors in rodents using a liposomal, nanoparticle contrast agent.(Int J Nanomedicine, 2009) Samei, Ehsan; Saunders, Robert S; Badea, Cristian T; Ghaghada, Ketan B; Hedlund, Laurence W; Qi, Yi; Yuan, Hong; Bentley, Rex C; Mukundan, SrinivasanA long circulating liposomal, nanoscale blood pool agent encapsulating traditional iodinated contrast agent (65 mg I/mL) was used for micro-computed tomography (CT) imaging of rats implanted with R3230AC mammary carcinoma. Three-dimensional vascular architecture of tumors was imaged at 100-micron isotropic resolution. The image data showed good qualitative correlation with pathologic findings. The approach holds promise for studying tumor angiogenesis and for evaluating anti-angiogenesis therapies.Item Open Access The Actin-Binding Protein Drebrin Inhibits Neointimal Hyperplasia.(Arteriosclerosis, thrombosis, and vascular biology, 2016-05) Stiber, Jonathan A; Wu, Jiao-Hui; Zhang, Lisheng; Nepliouev, Igor; Zhang, Zhu-Shan; Bryson, Victoria G; Brian, Leigh; Bentley, Rex C; Gordon-Weeks, Phillip R; Rosenberg, Paul B; Freedman, Neil JObjective
Vascular smooth muscle cell (SMC) migration is regulated by cytoskeletal remodeling as well as by certain transient receptor potential (TRP) channels, nonselective cation channels that modulate calcium influx. Proper function of multiple subfamily C TRP (TRPC) channels requires the scaffolding protein Homer 1, which associates with the actin-binding protein Drebrin. We found that SMC Drebrin expression is upregulated in atherosclerosis and in response to injury and investigated whether Drebrin inhibits SMC activation, either through regulation of TRP channel function via Homer or through a direct effect on the actin cytoskeleton.Approach and results
Wild-type (WT) and congenic Dbn(-/+) mice were subjected to wire-mediated carotid endothelial denudation. Subsequent neointimal hyperplasia was 2.4±0.3-fold greater in Dbn(-/+) than in WT mice. Levels of globular actin were equivalent in Dbn(-/+) and WT SMCs, but there was a 2.4±0.5-fold decrease in filamentous actin in Dbn(-/+) SMCs compared with WT. Filamentous actin was restored to WT levels in Dbn(-/+) SMCs by adenoviral-mediated rescue expression of Drebrin. Compared with WT SMCs, Dbn(-/+) SMCs exhibited increased TRP channel activity in response to platelet-derived growth factor, increased migration assessed in Boyden chambers, and increased proliferation. Enhanced TRP channel activity and migration in Dbn(-/+) SMCs were normalized to WT levels by rescue expression of not only WT Drebrin but also a mutant Drebrin isoform that binds actin but fails to bind Homer.Conclusions
Drebrin reduces SMC activation through its interaction with the actin cytoskeleton but independently of its interaction with Homer scaffolds.