Browsing by Author "Best, Janet"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access A mathematical model for histamine synthesis, release, and control in varicosities(Theoretical Biology and medical Modelling, 2017) Reed, MC; Nijhout, HF; Best, Janet; Samaranayake, S; Hashemi, PItem Open Access An In Vivo Definition of Brain Histamine Dynamics Reveals Critical Neuromodulatory Roles for This Elusive Messenger.(International journal of molecular sciences, 2022-11) Berger, Shane N; Baumberger, Beatrice; Samaranayake, Srimal; Hersey, Melinda; Mena, Sergio; Bain, Ian; Duncan, William; Reed, Michael C; Nijhout, H Frederik; Best, Janet; Hashemi, ParastooHistamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.Item Open Access Inflammation-Induced Histamine Impairs the Capacity of Escitalopram to Increase Hippocampal Extracellular Serotonin.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2021-07) Hersey, Melinda; Samaranayake, Srimal; Berger, Shane N; Tavakoli, Navid; Mena, Sergio; Nijhout, H Frederik; Reed, Michael C; Best, Janet; Blakely, Randy D; Reagan, Lawrence P; Hashemi, ParastooCommonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.Item Open Access Serotonin is a Common Thread Linking Different Classes of Antidepressants.(Res Sq, 2023-03-28) Witt, Colby E; Mena, Sergio; Holmes, Jordan; Hersey, Melinda; Buchanan, Anna Marie; Parke, Brenna; Saylor, Rachel; Honan, Lauren E; Berger, Shane N; Lumbreras, Sara; Nijhout, Frederik H; Reed, Michael C; Best, Janet; Fadel, James; Schloss, Patrick; Lau, Thorsten; Hashemi, ParastooDepression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (synaptic plasticity and neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of antidepressants. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis and the monoamine hypothesis).Item Open Access Serotonin synthesis, release and reuptake in terminals: a mathematical model.(Theor Biol Med Model, 2010-08-19) Best, Janet; Nijhout, H Frederik; Reed, MichaelBACKGROUND: Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. METHODS: We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. RESULTS: We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine. CONCLUSIONS: Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.Item Open Access Systems Biology of Phenotypic Robustness and Plasticity.(Integr Comp Biol, 2017-08-01) Nijhout, H Frederik; Sadre-Marandi, Farrah; Best, Janet; Reed, Michael CSYNOPSIS: Gene regulatory networks, cellular biochemistry, tissue function, and whole body physiology are imbued with myriad overlapping and interacting homeostatic mechanisms that ensure that many phenotypes are robust to genetic and environmental variation. Animals also often have plastic responses to environmental variables, which means that many different phenotypes can correspond to a single genotype. Since natural selection acts on phenotypes, this raises the question of how selection can act on the genome if genotypes are decoupled from phenotypes by robustness and plasticity mechanisms. The answer can be found in the systems biology of the homeostatic mechanisms themselves. First, all such mechanisms operate over a limited range and outside that range the controlled variable changes rapidly allowing natural selection to act. Second, mutations and environmental stressors can disrupt homeostatic mechanisms, exposing cryptic genetic variation and allowing natural selection to act. We illustrate these ideas by examining the systems biology of four specific examples. We show how it is possible to analyze and visualize the roles of specific genes and specific polymorphisms in robustness in the context of large and realistic nonlinear systems. We also describe a new method, system population models, that allows one to connect causal dynamics to the variable outcomes that one sees in biological populations with large variation.