Browsing by Author "Billings, SA"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access A simple method for estimating the influence of eroding soil profiles on atmospheric CO2(Global Biogeochemical Cycles, 2010-04-01) Billings, SA; Buddemeier, RW; De, D; Van Oost, K; Bohling, GAlthough soil erosion has often been considered a net source of atmospheric carbon (C), several recent studies suggest that erosion serves as a net C sink. We have developed a spreadsheet-based model of soil organic C dynamics within an eroding profile (Soil Organic Carbon, Erosion, Replacement, and Oxidation (SOrCERO)) that calculates effects of soil organic carbon (SOC) erosion and altered SOC oxidation and production on the net exchange of C between the eroding profile and atmosphere. SOrCERO suggests that erosion can induce a net C sink or source, depending on management practices, the extent to which SOC oxidation and production characteristics change with erosion, and the fate of eroded SOC. Varying these parameters generated a wide range of C source and sink estimates (maximum net source and sink of 1.1/3.1 Pg C yr-1 respectively, applying results globally), highlighting research needs to constrain model estimates. We invite others to download SOrCERO (http://www.kbs.ku.edu/people/staff-www/billings/index.html) to test conceptual models and eroding soil profiles of interest in a consistent, comparable fashion. Copyright 2010 by the American Geophysical Union.Item Open Access Distinct contributions of eroding and depositional profiles to land-atmosphere CO 2 exchange in two contrasting forests(Frontiers in Earth Science, 2019-02-26) Billings, SA; Richter, DDB; Ziegler, SE; Prestegaard, K; Wade, AM© 2019 Billings, Richter, Ziegler, Prestegaard and Wade. Lateral movements of soil organic C (SOC) influence Earth's C budgets by transporting organic C across landscapes and by modifying soil-profile fluxes of CO 2 . We extended a previously presented model (Soil Organic C Erosion Replacement and Oxidation, SOrCERO) and present SOrCERODe, a model with which we can project how erosion and subsequent deposition of eroded material can modify biosphere-atmosphere CO 2 fluxes in watersheds. The model permits the user to quantify the degree to which eroding and depositional profiles experience a change in SOC oxidation and production as formerly deep horizons become increasingly shallow, and as depositional profiles are buried. To investigate the relative importance of erosion rate, evolving SOC depth distributions, and mineralization reactivity on modeled soil C fluxes, we examine two forests exhibiting distinct depth distributions of SOC content and reactivity, hydrologic regimes and land use. Model projections suggest that, at decadal to centennial timescales: (1) the quantity of SOC moving across a landscape depends on erosion rate and the degree to which SOC production and oxidation at the eroding profile are modified as deeper horizons become shallower, and determines the degree to which depositional profile SOC fluxes are modified; (2) erosional setting C sink strength increases with erosion rate, with some sink effects reaching more than 40% of original profile SOC content after 100 y of a relatively high erosion rate (i.e., 1 mm y −1 ); (3) even large amounts of deposited SOC may not promote a large depositional profile C sink even with large gains in autochthonous SOC post-deposition if oxidation of buried SOC is not limited; and (4) when modeled depositional settings receive a disproportionately large amount of SOC, simulations of strong C sink scenarios mimic observations of modest preservation of buried SOC and large SOC gains in surficial horizons, suggesting that C sink scenarios have merit in these forests. Our analyses illuminate the importance of cross-landscape linkages between upland and depositional environments for watershed-scale biosphere-atmosphere C fluxes, and emphasize the need for accurate representations and observations of time-varying depth distributions of SOC reactivity across evolving watersheds if we seek accurate projections of ecosystem C balances.Item Open Access Ideas and perspectives: Strengthening the biogeosciences in environmental research networks(Biogeosciences, 2018-08-15) Richter, DD; Billings, SA; Groffman, PM; Kelly, EF; Lohse, KA; McDowell, WH; White, TS; Anderson, S; Baldocchi, DD; Banwart, S; Brantley, S; Braun, JJ; Brecheisen, ZS; Cook, CS; Hartnett, HE; Hobbie, SE; Gaillardet, J; Jobbagy, E; Jungkunst, HF; Kazanski, CE; Krishnaswamy, J; Markewitz, D; O'Neill, K; Riebe, CS; Schroeder, P; Siebe, C; Silver, WL; Thompson, A; Verhoef, A; Zhang, G© Author(s) 2018. Long-term environmental research networks are one approach to advancing local, regional, and global environmental science and education. A remarkable number and wide variety of environmental research networks operate around the world today. These are diverse in funding, infrastructure, motivating questions, scientific strengths, and the sciences that birthed and maintain the networks. Some networks have individual sites that were selected because they had produced invaluable long-term data, while other networks have new sites selected to span ecological gradients. However, all long-term environmental networks share two challenges. Networks must keep pace with scientific advances and interact with both the scientific community and society at large. If networks fall short of successfully addressing these challenges, they risk becoming irrelevant. The objective of this paper is to assert that the biogeosciences offer environmental research networks a number of opportunities to expand scientific impact and public engagement. We explore some of these opportunities with four networks: the International Long-Term Ecological Research Network programs (ILTERs), critical zone observatories (CZOs), Earth and ecological observatory networks (EONs), and the FLUXNET program of eddy flux sites. While these networks were founded and expanded by interdisciplinary scientists, the preponderance of expertise and funding has gravitated activities of ILTERs and EONs toward ecology and biology, CZOs toward the Earth sciences and geology, and FLUXNET toward ecophysiology and micrometeorology. Our point is not to homogenize networks, nor to diminish disciplinary science. Rather, we argue that by more fully incorporating the integration of biology and geology in long-term environmental research networks, scientists can better leverage network assets, keep pace with the ever-changing science of the environment, and engage with larger scientific and public audiences.Item Open Access Loss of deep roots limits biogenic agents of soil development that are only partially restored by decades of forest regeneration(Elementa, 2018-01-01) Billings, SA; Hirmas, D; Sullivan, PL; Lehmeier, CA; Bagchi, S; Min, K; Brecheisen, Z; Hauser, E; Stair, R; Flournoy, R; De Richter, DB© 2018 The Author(s). Roots and associated microbes generate acid-forming CO2 and organic acids and accelerate mineral weathering deep within Earth's critical zone (CZ). At the Calhoun CZ Observatory in the USA's Southern Piedmont, we tested the hypothesis that deforestation-induced deep root losses reduce root- and microbially-mediated weathering agents well below maximum root density (to 5 m), and impart land-use legacies even after ∼70 y of forest regeneration. In forested plots, root density declined with depth to 200 cm; in cultivated plots, roots approached zero at depths >70 cm. Below 70 cm, root densities in old-growth forests averaged 2.1 times those in regenerating forests. Modeled root distributions suggest declines in density with depth were steepest in agricultural plots, and least severe in old-growth forests. Root densities influenced biogeochemical environments in multiple ways. Microbial community composition varied with land use from surface horizons to 500 cm; relative abundance of root-associated bacteria was greater in old-growth soils than in regenerating forests, particularly at 100-150 cm. At 500 cm in old-growth forests, salt-extractable organic C (EOC), an organic acid proxy, was 8.8 and 12.5 times that in regenerating forest and agricultural soils, respectively. The proportion of soil organic carbon comprised of EOC was greater in old-growth forests (20.0 ± 2.6%) compared to regenerating forests (2.1 ± 1.1) and agricultural soils (1.9 ± 0.9%). Between 20 and 500 cm, [EOC] increased more with root density in old-growth relative to regenerating forests. At 300 cm, in situ growing season [CO2] was significantly greater in old-growth forests relative to regenerating forests and cultivated plots; at 300 and 500 cm, cultivated soil [CO2] was significantly lower than in forests. Microbially-respired δ13C-CO2 suggests that microbes may rely partially on crop residue even after ∼70 y of forest regeneration. We assert that forest conversion to frequently disturbed ecosystems limits deep roots and reduces biotic generation of downward-propagating weathering agents.Item Open Access Persistent anthropogenic legacies structure depth dependence of regenerating rooting systems and their functions(Biogeochemistry, 2020-02-01) Hauser, E; Richter, DD; Markewitz, D; Brecheisen, Z; Billings, SA© 2020, Springer Nature Switzerland AG. Biotically-mediated weathering helps to shape Earth’s surface. For example, plants expend carbon (C) to mobilize nutrients in forms whose relative abundances vary with depth. It thus is likely that trees’ nutrient acquisition strategies—their investment in rooting systems and exudates—may function differently following disturbance-induced changes in depth of rooting zones and soil nutrient stocks. These changes may persist across centuries. We test the hypothesis that plant C allocation for nutrient acquisition is depth dependent as a function of rooting system development and relative abundances of organic vs. mineral nutrient stocks. We further posit that patterns of belowground C allocation to nutrient acquisition reveal anthropogenic signatures through many decades of forest regeneration. To test this idea, we examined fine root abundances and rooting system C in organic acid exudates and exo-enzymes in tandem with depth distributions of organically- and mineral-bound P stocks. Our design permitted us to estimate C tradeoffs between organic vs. mineral nutrient benefits in paired forests with many similar aboveground traits but different ages: post-agricultural mixed-pine forests and older reference hardwoods. Fine roots were more abundant throughout the upper 2 m in reference forest soils than in regenerating stands. Rooting systems in all forests exhibited depth-dependent C allocations to nutrient acquisition reflecting relative abundances of organic vs. mineral bound P stocks. Further, organic vs. mineral stocks underwent redistribution with historic land use, producing distinct ecosystem nutritional economies. In reference forests, rooting systems are allocating C to relatively deep fine roots and low-C exudation strategies that can increase mobility of mineral-bound P stocks. Regenerating forests exhibit relatively shallower fine root distributions and more diverse exudation strategies reflecting more variable nutrient stocks. We observed these disparities in rooting systems’ depth and nutritional mechanisms even though the regenerating forests have attained aboveground biomass stocks similar to those in reference hardwood forests. These distinctions offer plausible belowground mechanisms for observations of continued C sink strength in relatively old forests, and have implications for soil C fates and soil development on timescales relevant to human lifetimes. As such, depth-dependent nutrient returns on plant C investments represent a subtle but consequential signal of the Anthropocene.Item Open Access Soil production and the soil geomorphology legacy of Grove Karl Gilbert(Soil Science Society of America Journal, 2020-01-01) Richter, DD; Eppes, MC; Austin, JC; Bacon, AR; Billings, SA; Brecheisen, Z; Ferguson, TA; Markewitz, D; Pachon, J; Schroeder, PA; Wade, AM© 2019 The Authors. Soil Science Society of America published by Wiley Periodicals, Inc. on behalf of Soil Science Society of America Geomorphologists are quantifying the rates of an important component of bedrock's weathering in research that needs wide discussion among soil scientists. By using cosmogenic nuclides, geomorphologists estimate landscapes’ physical lowering, which, in a steady landscape, equates to upward transfers of weathered rock into slowly moving hillslope-soil creep. Since the 1990s, these processes have been called “soil production” or “mobile regolith production”. In this paper, we assert the importance of a fully integrated pedological and geomorphological approach not only to soil creep but to soil, regolith, and landscape evolution; we clarify terms to facilitate soil geomorphology collaboration; and we seek a greater understanding of our sciences’ history. We show how the legacy of Grove Karl Gilbert extend across soil geomorphology. We interpret three contrasting soils and regoliths in the USA's Southern Piedmont in the context of a Gilbert-inspired model of weathering and transport, a model of regolith evolution and of nonsteady systems that liberate particles and solutes from bedrock and transport them across the landscape. This exercise leads us to conclude that the Southern Piedmont is a region with soils and regoliths derived directly from weathering bedrock below (a regional paradigm for more than a century) but that the Piedmont also has significant areas in which regoliths are at least partly formed from paleo-colluvia that may be massive in volume and overlie organic-enriched layers, peat, and paleo-saprolite. An explicitly integrated study of soil geomorphology can accelerate our understanding of soil, regoliths, and landscape evolution in all physiographic regions.Item Open Access Strengthening the world’s long-term soil research base.(International Union of Soil Science Bulletin, 2008) Richter, D deB; Billings, SAItem Open Access Topographic variability and the influence of soil erosion on the carbon cycle(Global Biogeochemical Cycles, 2016-05-01) Dialynas, YG; Bastola, S; Bras, RL; Billings, SA; Markewitz, D; Richter, DDB©2016. American Geophysical Union. All Rights Reserved. Soil erosion, particularly that caused by agriculture, is closely linked to the global carbon (C) cycle. There is a wide range of contrasting global estimates of how erosion alters soil-atmosphere C exchange. This can be partly attributed to limited understanding of how geomorphology, topography, and management practices affect erosion and oxidation of soil organic C (SOC). This work presents a physically based approach that stresses the heterogeneity at fine spatial scales of SOC erosion, SOC burial, and associated soil-atmosphere C fluxes. The Holcombe's Branch watershed, part of the Calhoun Critical Zone Observatory in South Carolina, USA, is the case study used. The site has experienced some of the most serious agricultural soil erosion in North America. We use SOC content measurements from contrasting soil profiles and estimates of SOC oxidation rates at multiple soil depths. The methodology was implemented in the tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially and depth-explicit model of SOC dynamics built within an existing coupled physically based hydro-geomorphic model. According to observations from multiple soil profiles, about 32% of the original SOC content has been eroded in the study area. The results indicate that C erosion and its replacement exhibit significant topographic variation at relatively small scales (tens of meters). The episodic representation of SOC erosion reproduces the history of SOC erosion better than models that use an assumption of constant erosion in space and time. The net atmospheric C exchange at the study site is estimated to range from a maximum source of 14.5 g m−2 yr−1 to a maximum sink of −18.2 g m−2 yr−1. The small-scale complexity of C erosion and burial driven by topography exerts a strong control on the landscape's capacity to serve as a C source or a sink.